login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073005
Decimal expansion of Gamma(1/3).
50
2, 6, 7, 8, 9, 3, 8, 5, 3, 4, 7, 0, 7, 7, 4, 7, 6, 3, 3, 6, 5, 5, 6, 9, 2, 9, 4, 0, 9, 7, 4, 6, 7, 7, 6, 4, 4, 1, 2, 8, 6, 8, 9, 3, 7, 7, 9, 5, 7, 3, 0, 1, 1, 0, 0, 9, 5, 0, 4, 2, 8, 3, 2, 7, 5, 9, 0, 4, 1, 7, 6, 1, 0, 1, 6, 7, 7, 4, 3, 8, 1, 9, 5, 4, 0, 9, 8, 2, 8, 8, 9, 0, 4, 1, 1, 8, 8, 7, 8, 9, 4, 1, 9, 1, 5
OFFSET
1,1
COMMENTS
Nesterenko proves that this constant is transcendental (he cites Chudnovsky as the first to show this); in fact it is algebraically independent of Pi and exp(sqrt(3)*Pi) over Q. - Charles R Greathouse IV, Nov 11 2013
REFERENCES
H. B. Dwight, Tables of Integrals and other Mathematical Data. 860.18, 860.19 in Definite Integrals. New York, U.S.A.: Macmillan Publishing, 1961, p. 230.
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 33.
Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 43, equation 43:4:8 at page 413.
LINKS
Alessandro Languasco and Pieter Moree, Euler constants from primes in arithmetic progression, arXiv:2406.16547 [math.NT], 2024. See p. 8.
Yu V. Nesterenko, Modular functions and transcendence questions, Sbornik: Mathematics 187:9 (1996), pp. 1319-1348. (English translation)
Simon Plouffe, GAMMA(1/3).
FORMULA
this * A073006 = A186706. - R. J. Mathar, Jan 15 2021
From Amiram Eldar, Jun 25 2021: (Start)
Equals 2^(7/9) * Pi^(1/3) * K((sqrt(3)-1)/(2*sqrt(2)))^(1/3)/3^(1/12), where K is the complete elliptic integral of the first kind.
Equals 2^(7/9) * Pi^(2/3) /(AGM(2, sqrt(2+sqrt(3)))^(1/3) * 3^(1/12)), where AGM is the arithmetic-geometric mean. (End)
From Andrea Pinos, Aug 12 2023: (Start)
Equals Integral_{x=0..oo} 3*exp(-(x^3)) dx = 3*A202623.
General result: Gamma(1/n) = Integral_{x=0..oo} n*exp(-(x^n)) dx. (End)
Equals 3*A202623 = exp(A256165). - Hugo Pfoertner, Jun 28 2024
EXAMPLE
Gamma(1/3) = 2.6789385347077476336556929409746776441286893779573011009...
MATHEMATICA
RealDigits[ N[ Gamma[1/3], 110]][[1]]
PROG
(PARI) default(realprecision, 1080); x=gamma(1/3); for (n=1, 1000, d=floor(x); x=(x-d)*10; write("b073005.txt", n, " ", d)); \\ Harry J. Smith, Apr 19 2009
(Magma) R:= RealField(100); SetDefaultRealField(R); Gamma(1/3); // G. C. Greubel, Mar 10 2018
CROSSREFS
KEYWORD
cons,nonn,changed
AUTHOR
Robert G. Wilson v, Aug 03 2002
STATUS
approved

  NODES
orte 1
see 2
Story 1