login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073732
Decimal expansion of lim_{n -> infinity} n*phi - Sum_{k=1..n} F(k+1)/F(k), where phi is the golden ratio and F(k) denotes the k-th Fibonacci number.
0
3, 1, 8, 4, 5, 2, 9, 6, 4, 0, 7, 4, 5, 0, 1, 0, 8, 1, 2, 9, 2, 1, 7, 5, 7, 2, 1, 3, 2, 6, 2, 4, 7, 6, 3, 9, 9, 3, 6, 1, 8, 7, 8, 2, 2, 7, 3, 0, 7, 5, 8, 3, 5, 2, 0, 9, 9, 0, 6, 4, 2, 6, 5, 9, 8, 4, 3, 4, 6, 8, 7, 8, 2, 6, 2, 1, 9, 0, 3, 3, 1, 1, 9, 0, 4, 9, 6, 5, 4, 1, 9, 6, 4, 5, 8, 2, 9, 6, 8, 7, 7, 0, 4, 7
OFFSET
0,1
FORMULA
Equals (1/2) * lim_{n -> infinity} n*sqrt(5) - Sum_{k=1..n} F(2*k)/F(k)^2.
From Amiram Eldar, Oct 05 2020: (Start)
Equals Sum_{k>=1} (-1)^(k+1)/(phi^k * F(k)).
Equals sqrt(5) * Sum_{k>=1} (-1)^(k+1)/(phi^(2*k) - (-1)^k). (End)
EXAMPLE
0.31845296407450108129217572132624763993618782273...
MATHEMATICA
f[n_] := f[n] = n *GoldenRatio - Sum[Fibonacci[k + 1]/Fibonacci[k], {k, 1, n}] // RealDigits[#, 10, 104]& // First; f[n=100]; While[f[n] != f[n-100], n = n+100]; f[n] (* Jean-François Alcover, Feb 13 2013 *)
CROSSREFS
Sequence in context: A055249 A125172 A344381 * A021318 A068437 A016477
KEYWORD
cons,easy,nonn
AUTHOR
Benoit Cloitre, Sep 01 2002
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1
Note 1