login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077239
Bisection (odd part) of Chebyshev sequence with Diophantine property.
5
7, 37, 215, 1253, 7303, 42565, 248087, 1445957, 8427655, 49119973, 286292183, 1668633125, 9725506567, 56684406277, 330380931095, 1925601180293, 11223226150663, 65413755723685, 381259308191447, 2222142093424997, 12951593252358535, 75487417420726213
OFFSET
0,1
COMMENTS
a(n)^2 - 8*b(n)^2 = 17, with the companion sequence b(n)= A077413(n).
The even part is A077240(n) with Diophantine companion A054488(n).
FORMULA
a(n) = 6*a(n-1) - a(n-2), a(-1) := 5, a(0)=7.
a(n) = 2*T(n+1, 3)+T(n, 3), with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 3)= A001541(n).
G.f.: (7-5*x)/(1-6*x+x^2).
a(n) = (((3-2*sqrt(2))^n*(-8+7*sqrt(2))+(3+2*sqrt(2))^n*(8+7*sqrt(2))))/(2*sqrt(2)). - Colin Barker, Oct 12 2015
EXAMPLE
37 = a(1) = sqrt(8*A077413(1)^2 +17) = sqrt(8*13^2 + 17)= sqrt(1369) = 37.
MATHEMATICA
Table[2*ChebyshevT[n+1, 3] + ChebyshevT[n, 3], {n, 0, 19}] (* Jean-François Alcover, Dec 19 2013 *)
PROG
(PARI) Vec((7-5*x)/(1-6*x+x^2) + O(x^40)) \\ Colin Barker, Oct 12 2015
CROSSREFS
Cf. A077242 (even and odd parts).
Sequence in context: A126475 A274674 A255672 * A362087 A046235 A297329
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 08 2002
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1