login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077436
Let B(n) be the sum of binary digits of n. This sequence contains n such that B(n) = B(n^2).
29
0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 24, 28, 30, 31, 32, 48, 56, 60, 62, 63, 64, 79, 91, 96, 112, 120, 124, 126, 127, 128, 157, 158, 159, 182, 183, 187, 192, 224, 240, 248, 252, 254, 255, 256, 279, 287, 314, 316, 317, 318, 319, 351, 364, 365, 366, 374, 375, 379, 384
OFFSET
1,3
COMMENTS
Superset of A023758.
Hare, Laishram, & Stoll show that this sequence contains infinitely many odd numbers. In particular for each k in {12, 13, 16, 17, 18, 19, 20, ...} there are infinitely many terms in this sequence with binary digit sum k. - Charles R Greathouse IV, Aug 25 2015
LINKS
Karam Aloui, Damien Jamet, Hajime Kaneko, Steffen Kopecki, Pierre Popoli, and Thomas Stoll, On the binary digits of n and n^2, arXiv:2203.05451 [math.NT], 2022.
K. G. Hare, S. Laishram, and T. Stoll, The sum of digits of n and n^2, International Journal of Number Theory 7:7 (2011), pp. 1737-1752.
Giuseppe Melfi, On simultaneous binary expansions of n and n^2, arXiv:math/0402458 [math.NT], 2004.
Giuseppe Melfi, Su alcune successioni di interi (English with an Italian title)
FORMULA
A159918(a(n)) = A000120(a(n)). - Reinhard Zumkeller, Apr 25 2009
EXAMPLE
The element 79 belongs to the sequence because 79=(1001111) and 79^2=(1100001100001), so B(79)=B(79^2)
MAPLE
select(t -> convert(convert(t, base, 2), `+`) = convert(convert(t^2, base, 2), `+`), [$0..1000]); # Robert Israel, Aug 27 2015
MATHEMATICA
t={}; Do[If[DigitCount[n, 2, 1] == DigitCount[n^2, 2, 1], AppendTo[t, n]], {n, 0, 364}]; t
f[n_] := Total@ IntegerDigits[n, 2]; Select[Range[0, 384], f@ # == f[#^2] &] (* Michael De Vlieger, Aug 27 2015 *)
PROG
(Haskell)
import Data.List (elemIndices)
import Data.Function (on)
a077436 n = a077436_list !! (n-1)
a077436_list = elemIndices 0
$ zipWith ((-) `on` a000120) [0..] a000290_list
-- Reinhard Zumkeller, Apr 12 2011
(PARI) is(n)=hammingweight(n)==hammingweight(n^2) \\ Charles R Greathouse IV, Aug 25 2015
(Magma) [n: n in [0..400] | &+Intseq(n, 2) eq &+Intseq(n^2, 2)]; // Vincenzo Librandi, Aug 30 2015
(Python)
def ok(n): return bin(n).count('1') == bin(n**2).count('1')
print([m for m in range(400) if ok(m)]) # Michael S. Branicky, Mar 11 2022
CROSSREFS
Cf. A211676 (number of n-bit numbers in this sequence).
A261586 is a subsequence. Subsequence of A352084.
Sequence in context: A257250 A258209 A300630 * A277704 A082752 A023758
KEYWORD
easy,nonn,base
AUTHOR
Giuseppe Melfi, Nov 30 2002
EXTENSIONS
Initial 0 added by Reinhard Zumkeller, Apr 28 2012, Apr 12 2011
STATUS
approved

  NODES
orte 1
see 1
Story 1