OFFSET
1,3
COMMENTS
Superset of A023758.
Hare, Laishram, & Stoll show that this sequence contains infinitely many odd numbers. In particular for each k in {12, 13, 16, 17, 18, 19, 20, ...} there are infinitely many terms in this sequence with binary digit sum k. - Charles R Greathouse IV, Aug 25 2015
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10476, all terms <= 2^20
Karam Aloui, Damien Jamet, Hajime Kaneko, Steffen Kopecki, Pierre Popoli, and Thomas Stoll, On the binary digits of n and n^2, arXiv:2203.05451 [math.NT], 2022.
K. G. Hare, S. Laishram, and T. Stoll, The sum of digits of n and n^2, International Journal of Number Theory 7:7 (2011), pp. 1737-1752.
Giuseppe Melfi, On simultaneous binary expansions of n and n^2, arXiv:math/0402458 [math.NT], 2004.
Giuseppe Melfi, Su alcune successioni di interi (English with an Italian title)
FORMULA
EXAMPLE
The element 79 belongs to the sequence because 79=(1001111) and 79^2=(1100001100001), so B(79)=B(79^2)
MAPLE
select(t -> convert(convert(t, base, 2), `+`) = convert(convert(t^2, base, 2), `+`), [$0..1000]); # Robert Israel, Aug 27 2015
MATHEMATICA
t={}; Do[If[DigitCount[n, 2, 1] == DigitCount[n^2, 2, 1], AppendTo[t, n]], {n, 0, 364}]; t
f[n_] := Total@ IntegerDigits[n, 2]; Select[Range[0, 384], f@ # == f[#^2] &] (* Michael De Vlieger, Aug 27 2015 *)
PROG
(Haskell)
import Data.List (elemIndices)
import Data.Function (on)
a077436 n = a077436_list !! (n-1)
a077436_list = elemIndices 0
$ zipWith ((-) `on` a000120) [0..] a000290_list
-- Reinhard Zumkeller, Apr 12 2011
(PARI) is(n)=hammingweight(n)==hammingweight(n^2) \\ Charles R Greathouse IV, Aug 25 2015
(Magma) [n: n in [0..400] | &+Intseq(n, 2) eq &+Intseq(n^2, 2)]; // Vincenzo Librandi, Aug 30 2015
(Python)
def ok(n): return bin(n).count('1') == bin(n**2).count('1')
print([m for m in range(400) if ok(m)]) # Michael S. Branicky, Mar 11 2022
CROSSREFS
KEYWORD
easy,nonn,base
AUTHOR
Giuseppe Melfi, Nov 30 2002
EXTENSIONS
Initial 0 added by Reinhard Zumkeller, Apr 28 2012, Apr 12 2011
STATUS
approved