login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082841
a(n) = 4*a(n-1) - a(n-2) for n>1, a(0)=3, a(1)=9.
11
3, 9, 33, 123, 459, 1713, 6393, 23859, 89043, 332313, 1240209, 4628523, 17273883, 64467009, 240594153, 897909603, 3351044259, 12506267433, 46674025473, 174189834459, 650085312363, 2426151414993, 9054520347609, 33791929975443
OFFSET
0,1
COMMENTS
y-values in the solutions to 3*x^2+6 = y^2. - Sture Sjöstedt, Nov 25 2011
Positive values of x (or y) satisfying x^2 - 4*x*y + y^2 + 18 = 0. - Colin Barker, Feb 04 2014
Positive values of x (or y) satisfying x^2 - 14*x*y + y^2 + 288 = 0. - Colin Barker, Feb 16 2014
FORMULA
G.f.: (3 -6*x +3*x^2)/((1-x)*(1-4*x+x^2)).
a(n) = sqrt(3/2)*(a^(n+1/2) + b^(n+1/2)), with a=2+sqrt(3) and b=2-sqrt(3).
a(n) = sqrt(3*(11 +12*A082840(n) +4*A082840(n)^2)).
a(n) = sqrt((3/2)*(A003500(2n+1) +2)).
a(n) - a(n-1) = 6*A001353(n).
a(n) == 3 (mod 6).
a(n) = 3 * A001835(n+1).
a(n) = 3*x(n) + 3*y(n) for x(n)= A001075(n) and y(n) = A001353(n) the solutions to x^2 - 3*y^2 = 1. - Greg Dresden and his Math 222 Linear Algebra class, Oct 05 2022
MAPLE
a:=proc(n) option remember; if n=0 then 3 elif n=1 then 9 else 4*a(n-1)-a(n-2); fi; end: seq(a(n), n=0..40); # Wesley Ivan Hurt, Jan 21 2017
MATHEMATICA
CoefficientList[Series[(3-6x+3x^2)/((1-x)(1-4x+x^2)), {x, 0, 25}], x]
LinearRecurrence[{4, -1}, {3, 9}, 30] (* Harvey P. Dale, Aug 28 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((3-6*x+3*x^2)/((1-x)*(1-4*x+x^2))) \\ G. C. Greubel, Feb 25 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (3-6*x+3*x^2)/((1-x)*(1-4*x+x^2)) )); // G. C. Greubel, Feb 25 2019
(Sage) ((3-6*x+3*x^2)/((1-x)*(1-4*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019
(GAP) a:=[3, 9];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Feb 25 2019
CROSSREFS
First differences of A005320.
Cf. A001834.
Sequence in context: A148996 A255713 A148997 * A151038 A039648 A307454
KEYWORD
nonn,easy
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Apr 14 2003
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1