login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084128
a(n) = 4*a(n-1) + 4*a(n-2), a(0)=1, a(1)=2.
14
1, 2, 12, 56, 272, 1312, 6336, 30592, 147712, 713216, 3443712, 16627712, 80285696, 387653632, 1871757312, 9037643776, 43637604352, 210700992512, 1017354387456, 4912221519872, 23718303629312, 114522100596736, 552961616904192, 2669934870003712
OFFSET
0,2
COMMENTS
Original name was: Generalized Fibonacci sequence.
Binomial transform of A084058.
LINKS
Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
Tanya Khovanova, Recursive Sequences
FORMULA
a(n) = 2^n * A001333(n).
G.f.: (1-2*x)/(1-4*x-4*x^2).
a(n) = 4*a(n-1) + 4*a(n-2), a(0)=1, a(1)=2.
a(n) = (2 + 2*sqrt(2))^n/2 + (2 - 2*sqrt(2))^n/2.
E.g.f.: exp(2*x)*cosh(2*x*sqrt(2)).
From Johannes W. Meijer, Aug 01 2010: (Start)
Lim_{k->infinity} a(n+k)/a(k) = A084128(n) + 2*A057087(n-1)*sqrt(2).
Lim_{n->infinity} A084128(n)/A057087(n-1) = sqrt(2). (End)
a(n) = Sum_{k=0..n} A201730(n,k)*7^k. - Philippe Deléham, Dec 06 2011
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(4*k-2)/(x*(4*k+2) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) = 2^(n-1)*A002203(n). - Vladimir Reshetnikov, Oct 07 2016
MAPLE
a:=proc(n) option remember; if n=0 then 1 elif n=1 then 2 else
4*a(n-1)+4*a(n-2); fi; end: seq(a(n), n=0..40); # Wesley Ivan Hurt, Jan 31 2017
a := n -> (2*I)^n*ChebyshevT(n, -I):
seq(simplify(a(n)), n = 0..23); # Peter Luschny, Dec 03 2023
MATHEMATICA
CoefficientList[Series[(2 z - 1)/(4 z^2 + 4 z - 1), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
Table[2^(n-1) LucasL[n, 2], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 07 2016 *)
LinearRecurrence[{4, 4}, {1, 2}, 30] (* Harvey P. Dale, Mar 01 2018 *)
PROG
(PARI) a(n)=if(n<0, 0, polsym(4+4*x-x^2, n)[n+1]/2)
(Sage) [lucas_number2(n, 4, -4)/2 for n in range(0, 23)] # Zerinvary Lajos, May 14 2009
(Magma) [2^(n-1)*Evaluate(DicksonFirst(n, -1), 2): n in [0..40]]; // G. C. Greubel, Oct 13 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, May 16 2003
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1