OFFSET
0,2
COMMENTS
Original name was: Generalized Fibonacci sequence.
Binomial transform of A084058.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (4,4).
FORMULA
a(n) = 2^n * A001333(n).
G.f.: (1-2*x)/(1-4*x-4*x^2).
a(n) = 4*a(n-1) + 4*a(n-2), a(0)=1, a(1)=2.
a(n) = (2 + 2*sqrt(2))^n/2 + (2 - 2*sqrt(2))^n/2.
E.g.f.: exp(2*x)*cosh(2*x*sqrt(2)).
From Johannes W. Meijer, Aug 01 2010: (Start)
a(n) = Sum_{k=0..n} A201730(n,k)*7^k. - Philippe Deléham, Dec 06 2011
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(4*k-2)/(x*(4*k+2) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) = 2^(n-1)*A002203(n). - Vladimir Reshetnikov, Oct 07 2016
MAPLE
a:=proc(n) option remember; if n=0 then 1 elif n=1 then 2 else
4*a(n-1)+4*a(n-2); fi; end: seq(a(n), n=0..40); # Wesley Ivan Hurt, Jan 31 2017
a := n -> (2*I)^n*ChebyshevT(n, -I):
seq(simplify(a(n)), n = 0..23); # Peter Luschny, Dec 03 2023
MATHEMATICA
CoefficientList[Series[(2 z - 1)/(4 z^2 + 4 z - 1), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
Table[2^(n-1) LucasL[n, 2], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 07 2016 *)
LinearRecurrence[{4, 4}, {1, 2}, 30] (* Harvey P. Dale, Mar 01 2018 *)
PROG
(PARI) a(n)=if(n<0, 0, polsym(4+4*x-x^2, n)[n+1]/2)
(Sage) [lucas_number2(n, 4, -4)/2 for n in range(0, 23)] # Zerinvary Lajos, May 14 2009
(Magma) [2^(n-1)*Evaluate(DicksonFirst(n, -1), 2): n in [0..40]]; // G. C. Greubel, Oct 13 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, May 16 2003
STATUS
approved