login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084844
Denominators of the continued fraction n + 1/(n + 1/...) [n times].
15
1, 2, 10, 72, 701, 8658, 129949, 2298912, 46866034, 1082120050, 27916772489, 795910114440, 24851643870041, 843458630403298, 30918112619119426, 1217359297034666112, 51240457936070359069, 2296067756927144738850, 109127748348241605689981
OFFSET
1,2
COMMENTS
The (n-1)-th term of the Lucas sequence U(n,-1). The numerator is the n-th term. Adjacent terms of the sequence U(n,-1) are relatively prime. - T. D. Noe, Aug 19 2004
From Flávio V. Fernandes, Mar 05 2021: (Start)
Also, the n-th term of the n-th metallic sequence (the diagonal through the array A073133, and its equivalents, which is rows formed by sequences beginning with A000045, A000129, A006190, A001076, A052918) as shown below (for n>=1):
0 1 0 1 0 1 ... A000035
0 [1] 1 2 3 5 ... A000045
0 1 [2] 5 12 29 ... A000129
0 1 3 [10] 33 109 ... A006190
0 1 4 17 [72] 305 ... A001076
0 1 5 26 135 [701] ... A052918. (End)
LINKS
Eric Weisstein's World of Mathematics, Lucas Sequence
FORMULA
a(n) = (s^n - (-s)^(-n))/(2*s - n), where s = (n + sqrt(n^2 + 4))/2. - Vladimir Reshetnikov, May 07 2016
a(n) = y(n,n), where y(m+2,n) = n*y(m+1,n) + y(m,n), with y(0,n)=0, y(1,n)=1 for all n. - Benedict W. J. Irwin, Nov 03 2016
a(n) ~ n^(n-1). - Vaclav Kotesovec, Jun 03 2017
a(n) = A117715(n,n). - Bobby Jacobs, Aug 12 2017
a(n) = [x^n] x/(1 - n*x - x^2). - Ilya Gutkovskiy, Oct 10 2017
a(n) == 0 (mod n) for even n and 1 (mod n) for odd n. - Flávio V. Fernandes, Dec 08 2020
a(n) == 0 (mod n) for even n and 1 (mod n^2) for odd n; see A065599. - Flávio V. Fernandes, Dec 25 2020
a(n) == 0 (mod 2*(n/2)^2) for even n and 1 (mod n^2) for odd n; see A129194. - Flávio V. Fernandes, Feb 06 2021
EXAMPLE
a(4) = 72 since 4 + 1/(4 + 1/(4 + 1/4)) = 305/72.
MAPLE
A084844 :=proc(n) combinat[fibonacci](n, n) end:
seq(A084844(n), n=1..30); # Zerinvary Lajos, Jan 03 2007
MATHEMATICA
myList[n_] := Module[{ex = {n}}, Do[ex = {ex, n}, {n - 1}]; Flatten[ex]] Table[Denominator[FromContinuedFraction[myList[n]]], {n, 1, 20}]
Table[s=n; Do[s=n+1/s, {n-1}]; Denominator[s], {n, 20}] (* T. D. Noe, Aug 19 2004 *)
Table[Fibonacci[n, n], {n, 1, 20}] (* Vladimir Reshetnikov, May 07 2016 *)
Table[DifferenceRoot[Function[{y, m}, {y[2+m]==n*y[1+m]+y[m], y[0]==0, y[1]==1}]][n], {n, 1, 20}] (* Benedict W. J. Irwin, Nov 03 2016 *)
PROG
(Python)
from sympy import fibonacci
def a(n):
return fibonacci(n, n)
print([a(n) for n in range(1, 31)]) # Indranil Ghosh, Aug 12 2017
CROSSREFS
Cf. A084845 (numerators).
Cf. A000045, A097690, A097691, A117715, A290864 (primes in this sequence).
Sequence in context: A185183 A052555 A204808 * A144011 A238085 A277502
KEYWORD
frac,nonn
AUTHOR
STATUS
approved

  NODES
orte 1
see 3
Story 1