login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084885
Triangular array, read by rows: T(n,k) = denominator of arithmetic derivative of n/k, 1<=k<=n.
3
1, 1, 1, 1, 4, 1, 1, 1, 9, 1, 1, 4, 9, 1, 1, 1, 1, 1, 4, 25, 1, 1, 4, 9, 2, 25, 36, 1, 1, 1, 9, 1, 25, 9, 49, 1, 1, 4, 1, 4, 25, 4, 49, 16, 1, 1, 1, 9, 4, 1, 9, 49, 1, 27, 1, 1, 4, 9, 2, 25, 36, 49, 16, 27, 100, 1, 1, 1, 1, 1, 25, 1, 49, 4, 9, 25, 121, 1
OFFSET
1,5
COMMENTS
Arithmetic derivative of n/k = (k*A003415(n)-n*A003415(k))/k^2;
LINKS
Eric Weisstein's World of Mathematics, Quotient Rule.
EXAMPLE
......................... 0
................... 1 ........ 0
............... 1 .... -1/4 ....... 0
........... 4 ..... 1 ...... 8/9 ....... 0
....... 1 ... -3/4 ... -2/9 ...... -1 ...... 0
... 5 ..... 1 ..... 1 ..... -1/4 .... 19/25 .... 0
1 .. -5/4 ... -4/9 ... -3/2 ... -2/25 ... -29/36 ... 0.
MATHEMATICA
ader[n_Integer] := ader[n] = Switch[n, 0|1, 0, _, If[PrimeQ[n], 1, Sum[Module[{p, e}, {p, e} = pe; n e/p], {pe, FactorInteger[n]}]]];
ader[Rational[n_, k_]] := (ader[n] k - ader[k] n)/k^2;
T[n_, k_] := ader[n/k] // Denominator;
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 26 2021 *)
CROSSREFS
Numerator=A084884, A084887.
Sequence in context: A274006 A203025 A057521 * A360969 A112538 A008477
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Jun 10 2003
STATUS
approved

  NODES
orte 1
see 1
Story 1