login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085139
a(n) = Sum_{i=0..n-1} (1 + (-1)^(n-1-i))/2 * Sum_{j=0..i} a(j)*a(i-j) for n > 0, with a(0) = 1.
4
1, 1, 2, 6, 18, 58, 194, 670, 2370, 8546, 31298, 116102, 435346, 1647418, 6283394, 24130174, 93226242, 362098050, 1413098370, 5538138182, 21788069266, 86016385274, 340655956802, 1353023683486, 5388230857538, 21510345134178
OFFSET
0,3
LINKS
Paul Barry, On Motzkin-Schröder Paths, Riordan Arrays, and Somos-4 Sequences, J. Int. Seq. (2023) Vol. 26, Art. 23.4.7.
FORMULA
G.f.: (1/(2*x)) * (1 - x^2 - sqrt((1 - x^2)^2 - 4*x*(1 - x^2))).
G.f.: C(x/(1-x^2)) where C(x) is the g.f. of A000108. - Paul Barry, Apr 12 2005
G.f.: 1/(1-z/(1-z/(1-z/(...)))) where z=x/(1-x^2) (continued fraction); this is a special case of the previous formula. - Joerg Arndt, Mar 18 2011
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*C(n-2k) - Sum_{k=0..floor((n-2)/2)} C(n-k-2,k)*C(n-2k-2). - Paul Barry, Nov 30 2008
From Paul Barry, May 27 2009: (Start)
G.f.: 1+x/(1-2x-2x^2/(1-x-2x^2/(1-2x-x^2/(1-2x-2x^2/(1-x-2x^2/(1-2x-x^2/(1-2x-2x^2/(1-x-2x^2/(1-... (continued fraction).
a(n) = 0^n + Sum_{k=0..floor((n-1)/2)} C(n-k-1,k)*A000108(n-2k). (End)
G.f.: M(F(x)) where F(x) is the g.f. of A000045, M(x) is the g.f. A001006. - Vladimir Kruchinin, Sep 06 2010
G.f. A(x) satisfies: A(x) = 1 + x/(1-x^2) * A(x)^2. - Paul D. Hanna, Jul 04 2018
G.f. A(x) satisfies: Sum_{n>=0} log( (1 - (-1)^n*x)/A(x) )^n / n! = 1. - Paul D. Hanna, Jul 04 2018
a(n) ~ 5^(1/4) * phi^(3*n) / (sqrt(2*Pi) * n^(3/2)), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 04 2018
MATHEMATICA
a[n_] := a[n] = (1/2)Sum[Sum[a[j]a[i -j], {j, 0, i}](1 + (-1)^(n+1+i)), {i, 0, n}]; a[0] = 1; Table[a[n], {n, 0, 10}]
(* Second program: *)
Block[{$MaxExtraPrecision = 1000}, CoefficientList[Series[(1/(2 x)) (1 - x^2 - Sqrt[(1 - x^2)^2 - 4 x (1 - x^2)]), {x, 0, 25}], x] ] (* Michael De Vlieger, Jun 06 2023 *)
CROSSREFS
Sequence in context: A157004 A293067 A360293 * A150041 A190790 A150042
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Jun 20 2003
EXTENSIONS
Name revised slightly by Paul D. Hanna, Jul 04 2018
STATUS
approved

  NODES
orte 1
see 1
Story 1