login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085260
Ratio-determined insertion sequence I(0.0833344) (see the link below).
9
1, 12, 155, 2003, 25884, 334489, 4322473, 55857660, 721827107, 9327894731, 120540804396, 1557702562417, 20129592507025, 260127000028908, 3361521407868779, 43439651302265219, 561353945521579068
OFFSET
1,2
COMMENTS
This sequence is the ratio-determined insertion sequence (RDIS) "twin" to A078362 (see the link for an explanation of "twin"). See A082630 or A082981 for recent examples of RDIS sequences.
a(n) = L(n,13), where L is defined as in A108299. - Reinhard Zumkeller, Jun 01 2005
For n >= 2, a(n) equals the permanent of the (2n-2) X (2n-2) tridiagonal matrix with sqrt(11)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Seems to be positive values of x (or y) satisfying x^2 - 13xy + y^2 + 11 = 0. - Colin Barker, Feb 10 2014
It appears that the b-file, formulas and programs are based on the conjectured, so far apparently unproved recurrence relation. - M. F. Hasler, Nov 05 2018
LINKS
A. Fink, R. K. Guy and M. Krusemeyer, Partitions with parts occurring at most thrice, Contrib. Discr. Math. 3 (2) (2008), pp. 76-114. See Section 13.
Tanya Khovanova, Recursive Sequences
J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv:1403.5962 [math.CO], 2014.
FORMULA
It appears that the sequence satisfies a(n+1) = 13*a(n) - a(n-1). [Corrected by M. F. Hasler, Nov 05 2018]
If the recurrence a(n+2) = 13*a(n+1) - a(n) holds then for n > 0, a(n)*a(n+3) = 143 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
G.f.: x*(1-x)/(1 - 13*x + x^2). - Philippe Deléham, Nov 17 2008
For n>1, a(n) is the numerator of the continued fraction [1,11,1,11,...,1,11] with (n-1) repetitions of 1,11. - Greg Dresden, Sep 10 2019
MATHEMATICA
CoefficientList[Series[(1 - x)/(1 - 13 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
LinearRecurrence[{13, -1}, {1, 12}, 30] (* G. C. Greubel, Jan 18 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(x*(1-x)/(1-13*x+x^2)) \\ G. C. Greubel, Jan 18 2018
(Magma) I:=[1, 12]; [n le 2 select I[n] else 13*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 18 2018
CROSSREFS
Row 13 of array A094954.
Cf. similar sequences listed in A238379.
Sequence in context: A036360 A120657 A015612 * A082173 A005723 A097259
KEYWORD
nonn
AUTHOR
John W. Layman, Jun 23 2003
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1