login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086953
Binomial transform of (-1)^mod(n,3) (A257075).
2
1, 0, 0, 2, 6, 12, 22, 42, 84, 170, 342, 684, 1366, 2730, 5460, 10922, 21846, 43692, 87382, 174762, 349524, 699050, 1398102, 2796204, 5592406, 11184810, 22369620, 44739242, 89478486, 178956972, 357913942, 715827882, 1431655764, 2863311530, 5726623062
OFFSET
0,4
FORMULA
a(n+3)/2 = A024495(n+2). - corrected by Vladimir Shevelev, Aug 08 2017
a(n) = 0^n + Sum{k=0..floor((n-1)/3)} C(n-1, 3*k+2).
a(n) = Sum{k=0..n} C(n, k)(-1)^mod(k, 3).
G.f.: (1 - 3*x + 3*x^2)/((1 - 2*x)*(1 - x + x^2)). - Paul Barry, Dec 14 2004
From Vladimir Shevelev, Aug 02 2017: (Start)
a(n) = A024493(n) - A131708(n) + A024495(n);
a(n) = A024495(n) if and only if n == 1 (mod 3);
a(n) = A024495(n) - 1 if and only if n == 2 or 3 (mod 6);
a(n) = A024495(n) + 1 if and only if n == 0 or 5 (mod 6);
a(3*k+1) = 2*A024495(3*k). (End)
a(n) = A131370(n+1)/2. - Rick L. Shepherd, Aug 02 2017
3*a(n) = 2^n + 2*A057079(n+2). - R. J. Mathar, Aug 04 2017
MATHEMATICA
Join[{1, a = 0, b = 0}, Table[c = 2^n - a + b; a = b; b = c, {n, 1, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jun 28 2011 *)
LinearRecurrence[{3, -3, 2}, {1, 0, 0}, 40] (* Harvey P. Dale, Aug 02 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Jul 25 2003
STATUS
approved

  NODES
orte 1
see 1
Story 1