login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087204
Period 6: repeat [2, 1, -1, -2, -1, 1].
14
2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1
OFFSET
0,1
COMMENTS
Satisfies (a(n))^2 = a(2n) + 2. Shifted differences of itself.
Moebius transform is length 6 sequence [1, -2, -3, 0, 0, 6]. - Michael Somos, Oct 22 2006
Twice the real part of x^n, where x is either of the primitive 6th roots of unity. For the root with positive imaginary part, the imaginary part of x^n is i*A128834(n)*sqrt(3)/2. - Peter Munn, Apr 25 2022
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 176.
FORMULA
a(n) = a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 1.
G.f.: (2-x)/(1-x+x^2).
a(n) = Sum_{k>=0} (-1)^k*n/(n-k)*C(n-k, k).
a(n) = (1/2)*((-1)^floor(n/3) + 2*(-1)^floor((n+1)/3) + (-1)^floor((n+2)/3)).
Multiplicative with a(2^e) = -1, a(3^e) = -2, a(p^e) = 1 otherwise. - David W. Wilson, Jun 12 2005
a(n) = a(-n) = -a(n-3) for all n in Z. - Michael Somos, Oct 22 2006
E.g.f.: 2*exp(x/2)*cos(sqrt(3)*x/2). - Sergei N. Gladkovskii, Aug 12 2012
a(n) = r^n + s^n, with r=(1+i*sqrt(3))/2 and s=(1-i*sqrt(3))/2 the roots of 1-x+x^2. - Ralf Stephan, Jul 19 2013
a(n) = 2*cos(n*Pi/3). - Wesley Ivan Hurt, Jun 19 2016
Dirichlet g.f.: zeta(s)*(1-2^(1-s)-3^(1-s)+6^(1-s)). - Amiram Eldar, Jan 01 2023
EXAMPLE
a(2) = -1 = a(1) - a(0) = 1 - 2 = ((1+sqrt(-3))/2)^2 + ((1-sqrt(-3))/2)^2 = -1 = -2/4 + 2*sqrt(-3)/4 - 2/4 -2 sqrt(-3)/4 = -1.
G.f. = 2 + x - x^2 - 2*x^3 - x^4 + x^5 + 2*x^6 + x^7 - x^8 - 2*x^9 - x^10 + ...
MAPLE
A087204:=n->[2, 1, -1, -2, -1, 1][(n mod 6)+1]: seq(A087204(n), n=0..100); # Wesley Ivan Hurt, Jun 19 2016
MATHEMATICA
PadLeft[{}, 108, {2, 1, -1, -2, -1, 1}] (* Harvey P. Dale, Sep 11 2011 *)
a[ n_] := {1, -1, -2, -1, 1, 2}[[Mod[n, 6, 1]]]; (* Michael Somos, Jan 29 2015 *)
a[ n_] := 2 Re[ Exp[ Pi I n / 3]]; (* Michael Somos, Mar 29 2015 *)
PROG
(PARI) {a(n) = [2, 1, -1, -2, -1, 1][n%6 + 1]}; /* Michael Somos, Oct 22 2006 */
(PARI) A087204(n) = if(0==n, 2, my(f = factor(n)); prod(k=1, #f~, if(f[k, 1]<=3, 1-f[k, 1], 1))); \\ (After David W. Wilson's multiplicative formula) - Antti Karttunen, Apr 28 2022
(Sage) [lucas_number2(n, 1, 1) for n in range(0, 102)] # Zerinvary Lajos, Apr 30 2009
(Magma) &cat[[2, 1, -1, -2, -1, 1]^^20]; // Wesley Ivan Hurt, Jun 19 2016
CROSSREFS
Essentially the same as A057079 and A100051. Pairwise sums of A010892.
Cf. A128834.
Sequence in context: A131556 A107751 A132367 * A101825 A177702 A131534
KEYWORD
sign,easy,mult
AUTHOR
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 19 2003
EXTENSIONS
Edited by Ralf Stephan, Feb 04 2005
STATUS
approved

  NODES
orte 1
see 1
Story 1