login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092181
Figurate numbers based on the 24-cell (4-D polytope with Schlaefli symbol {3,4,3}).
9
1, 24, 153, 544, 1425, 3096, 5929, 10368, 16929, 26200, 38841, 55584, 77233, 104664, 138825, 180736, 231489, 292248, 364249, 448800, 547281, 661144, 791913, 941184, 1110625, 1301976, 1517049, 1757728, 2025969, 2323800, 2653321, 3016704
OFFSET
1,2
COMMENTS
This is the 4-dimensional regular convex polytope called the 24-cell, hyperdiamond or icositetrachoron.
LINKS
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
Eric Weisstein's World of Mathematics, 24-Cell
FORMULA
a(n) = n^2*((3*n^2)-(4*n)+2).
a(n) = C(n+3,4) + 19 C(n+2,4) + 43 C(n+1,4) + 9 C(n,4).
a(n) = +5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5). G.f.: x*(1+19*x+43*x^2+9*x^3)/(1-x)^5. [R. J. Mathar, Jun 21 2010]
a(n) = Sum_{k = 1..n} (k^3 + k^7)* binomial(n,k)/binomial(n+k,k). Cf. A034262 and A155977. - Peter Bala, Feb 12 2019
EXAMPLE
a(3)= 3^2*((3*3^2)-(4*3)+2) = 9*(27-12+2) = 9*17 = 153
MATHEMATICA
Table[SeriesCoefficient[x (1 + 19 x + 43 x^2 + 9 x^3)/(1 - x)^5, {x, 0, n}], {n, 32}] (* Michael De Vlieger, Dec 14 2015 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 24, 153, 544, 1425}, 40] (* Harvey P. Dale, May 25 2022 *)
PROG
(Magma) [n^2*((3*n^2)-(4*n)+2): n in [1..40]]; // Vincenzo Librandi, May 22 2011
(PARI) a(n) = n^2*(3*n^2-4*n+2); \\ Michel Marcus, Dec 14 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Michael J. Welch (mjw1(AT)ntlworld.com), Mar 31 2004
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1