login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094574
Number of (<=2)-covers of an n-set.
19
1, 1, 5, 40, 457, 6995, 136771, 3299218, 95668354, 3268445951, 129468914524, 5868774803537, 301122189141524, 17327463910351045, 1109375488487304027, 78484513540137938209, 6098627708074641312182, 517736625823888411991202, 47791900951140948275632148
OFFSET
0,3
COMMENTS
Also the number of strict multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}. For example, the a(2) = 5 strict multiset partitions of {1, 1, 2, 2} are (1122), (1)(122), (2)(112), (11)(22), (1)(2)(12). - Gus Wiseman, Jul 18 2018
LINKS
FORMULA
Row sums of A094573.
E.g.f: exp(-1-1/2*(exp(x)-1))*Sum(exp(x*binomial(n+1, 2))/n!, n=0..infinity) or exp((1-exp(x))/2)*Sum(A094577 (n)*(x/2)^n/n!, n=0..infinity).
EXAMPLE
From Gus Wiseman, Sep 02 2019: (Start)
These are set-systems covering {1..n} with vertex-degrees <= 2. For example, the a(3) = 40 covers are:
{123} {1}{23} {1}{2}{3} {1}{2}{3}{12}
{2}{13} {1}{2}{13} {1}{2}{3}{13}
{3}{12} {1}{2}{23} {1}{2}{3}{23}
{1}{123} {1}{3}{12} {1}{2}{13}{23}
{12}{13} {1}{3}{23} {1}{2}{3}{123}
{12}{23} {2}{3}{12} {1}{3}{12}{23}
{13}{23} {2}{3}{13} {2}{3}{12}{13}
{2}{123} {1}{12}{23}
{3}{123} {1}{13}{23}
{12}{123} {1}{2}{123}
{13}{123} {1}{3}{123}
{23}{123} {2}{12}{13}
{2}{13}{23}
{2}{3}{123}
{3}{12}{13}
{3}{12}{23}
{12}{13}{23}
{1}{23}{123}
{2}{13}{123}
{3}{12}{123}
(End)
MATHEMATICA
facs[n_]:=facs[n]=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[Array[Prime, n, 1, Times]^2], UnsameQ@@#&]], {n, 0, 6}] (* Gus Wiseman, Jul 18 2018 *)
m = 20;
a094577[n_] := Sum[Binomial[n, k]*BellB[2 n - k], {k, 0, n}];
egf = Exp[(1 - Exp[x])/2]*Sum[a094577[n]*(x/2)^n/n!, {n, 0, m}] + O[x]^m;
CoefficientList[egf + O[x]^m, x]*Range[0, m-1]! (* Jean-François Alcover, May 13 2019 *)
CROSSREFS
Row n=2 of A219585. - Alois P. Heinz, Nov 23 2012
Dominated by A003465.
Graphs with vertex-degrees <= 2 are A136281.
Main diagonal of A346517.
Sequence in context: A282190 A052868 A292405 * A090362 A201366 A281160
KEYWORD
nonn
AUTHOR
Goran Kilibarda, Vladeta Jovovic, May 12 2004
STATUS
approved

  NODES
orte 1
see 1
Story 1