login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097769
Pell equation solutions (12*a(n))^2 - 145*b(n)^2 = -1 with b(n):=A097770(n), n >= 0.
4
1, 579, 334661, 193433479, 111804216201, 64622643530699, 37351776156527821, 21589261995829549839, 12478556081813323279121, 7212583826026105025782099, 4168860972887006891578774101, 2409594429744863957227505648279
OFFSET
0,2
FORMULA
G.f.: (1 + x)/(1 - 2*289*x + x^2).
a(n) = S(n, 2*289) + S(n-1, 2*289) = S(2*n, 2*sqrt(145)), with Chebyshev polynomials of the 2nd kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x).
a(n) = ((-1)^n)*T(2*n+1, 12*i)/(12*i) with the imaginary unit i and Chebyshev polynomials of the first kind. See the T-triangle A053120.
a(n) = 578*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=579. - Philippe Deléham, Nov 18 2008
a(n) = (1/12)*sinh((2*n + 1)*arcsinh(12)). - Bruno Berselli, Apr 05 2018
EXAMPLE
(x,y) = (12*1=12;1), (6948=12*579;577), (4015932=12*334661;333505), ... give the positive integer solutions to x^2 - 145*y^2 = -1.
MATHEMATICA
LinearRecurrence[{578, -1}, {1, 579}, 20] (* or *) CoefficientList[Series[(1 + x)/(1 - 578 x + x^2), {x, 0, 20}], x] (* Harvey P. Dale, May 15 2011 *)
PROG
(Magma) I:=[1, 579]; [n le 2 select I[n] else 578*Self(n-1)-Self(n-2): n in [1..15]]; // Vincenzo Librandi, May 20 2012
(PARI) x='x+O('x^99); Vec((1+x)/(1-2*289*x+x^2)) \\ Altug Alkan, Apr 05 2018
CROSSREFS
Cf. A097768 for S(n, 2*289).
Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775.
Sequence in context: A073735 A250727 A252985 * A186786 A185609 A127694
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 31 2004
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1