login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097770
Pell equation solutions (12*b(n))^2 - 145*a(n)^2 = -1 with b(n)=A097769(n), n >= 0.
5
1, 577, 333505, 192765313, 111418017409, 64399421297089, 37222754091700033, 21514687465581321985, 12435452132351912407297, 7187669817811939790095681, 4154460719243168846762896321, 2401271108052733781489163977857
OFFSET
0,2
FORMULA
a(n) = S(n, 2*289) - S(n-1, 2*289) = T(2*n+1, sqrt(145))/sqrt(145), with Chebyshev polynomials of the 2nd and first kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x); and A053120 for the T-triangle.
a(n) = ((-1)^n)*S(2*n, 24*i) with the imaginary unit i and Chebyshev polynomials S(n, x) with coefficients shown in A049310.
G.f.: (1-x)/(1-578*x+x^2).
a(n) = 578*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=577. - Philippe Deléham, Nov 18 2008
EXAMPLE
(x,y) = (12*1=12;1), (6948=12*579;577), (4015932=12*334661;333505), ... give the positive integer solutions to x^2 - 145*y^2 =-1.
MATHEMATICA
LinearRecurrence[{578, -1}, {1, 577}, 12] (* Ray Chandler, Aug 12 2015 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1-x)/(1-578*x+x^2)) \\ G. C. Greubel, Aug 01 2019
(Magma) I:=[1, 577]; [n le 2 select I[n] else 578*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019
(Sage) ((1-x)/(1-578*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
(GAP) a:=[1, 577];; for n in [3..20] do a[n]:=578*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
CROSSREFS
Cf. A097768 for S(n, 486).
Row 12 of array A188647.
Sequence in context: A163042 A069365 A163053 * A252377 A252376 A031522
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 31 2004
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1