login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107075
Centered square numbers that are also centered pentagonal numbers.
2
1, 181, 58141, 18721081, 6028129801, 1941039074701, 625008553923781, 201250813324382641, 64802136881897286481, 20866086825157601864101, 6718815155563865902953901, 2163437614004739663149291881
OFFSET
1,2
COMMENTS
The centered square numbers are n^2 + (n+1)^2 while the centered pentagonal numbers are (5*r^2 + 5*r + 2)/2. A number has both properties iff 5*(2*r+1)^2 = (4*n+2)^2 + 1. We solve the equation 5*Y^2 - 1 = X^2 whose solutions in positive integers are given by A075796 and A007805 respectively. The r values are 0,8,..., i.e., A053606. The n values define A119032.
FORMULA
G.f.: (z*(1-142*z+z^2))/((1-z)*(1-322*z+z^2)).
a(n+2) = 322*a(n+1)-a(n)-140 with a(1)=1 and a(2)=181.
a(n+1) = 161*a(n)-70+18*(80*a(n)^2-70*a(n)+15)^0.5.
a(n) = (14+(9-4*sqrt(5))^(2*n-1)+(9+4*sqrt(5))^(2*n-1))/32. - Gerry Martens, Jun 06 2015
MAPLE
a:= n-> (Matrix([181, 1, 1]). Matrix([[323, 1, 0], [ -323, 0, 1], [1, 0, 0]])^n)[1, 3]: seq(a(n), n=1..20); # Alois P. Heinz, Aug 14 2008
MATHEMATICA
LinearRecurrence[{323, -323, 1}, {1, 181, 58141}, 20] (* Harvey P. Dale, Nov 15 2018 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Richard Choulet, Aug 30 2007, Sep 20 2007
EXTENSIONS
More terms from Alois P. Heinz, Aug 14 2008
STATUS
approved

  NODES
orte 1
see 1
Story 1