login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109466
Riordan array (1, x(1-x)).
53
1, 0, 1, 0, -1, 1, 0, 0, -2, 1, 0, 0, 1, -3, 1, 0, 0, 0, 3, -4, 1, 0, 0, 0, -1, 6, -5, 1, 0, 0, 0, 0, -4, 10, -6, 1, 0, 0, 0, 0, 1, -10, 15, -7, 1, 0, 0, 0, 0, 0, 5, -20, 21, -8, 1, 0, 0, 0, 0, 0, -1, 15, -35, 28, -9, 1, 0, 0, 0, 0, 0, 0, -6, 35, -56, 36, -10, 1, 0, 0, 0, 0, 0, 0, 1, -21, 70, -84, 45, -11, 1, 0, 0, 0, 0
OFFSET
0,9
COMMENTS
Inverse is Riordan array (1, xc(x)) (A106566).
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, -1, 1, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
Modulo 2, this sequence gives A106344. - Philippe Deléham, Dec 18 2008
Coefficient array of the polynomials Chebyshev_U(n, sqrt(x)/2)*(sqrt(x))^n. - Paul Barry, Sep 28 2009
FORMULA
Number triangle T(n, k) = (-1)^(n-k)*binomial(k, n-k).
T(n, k)*2^(n-k) = A110509(n, k); T(n, k)*3^(n-k) = A110517(n, k).
Sum_{k=0..n} T(n,k)*A000108(k)=1. - Philippe Deléham, Jun 11 2007
From Philippe Deléham, Oct 30 2008: (Start)
Sum_{k=0..n} T(n,k)*A144706(k) = A082505(n+1).
Sum_{k=0..n} T(n,k)*A002450(k) = A100335(n).
Sum_{k=0..n} T(n,k)*A001906(k) = A100334(n).
Sum_{k=0..n} T(n,k)*A015565(k) = A099322(n).
Sum_{k=0..n} T(n,k)*A003462(k) = A106233(n). (End)
Sum_{k=0..n} T(n,k)*x^(n-k) = A053404(n), A015447(n), A015446(n), A015445(n), A015443(n), A015442(n), A015441(n), A015440(n), A006131(n), A006130(n), A001045(n+1), A000045(n+1), A000012(n), A010892(n), A107920(n+1), A106852(n), A106853(n), A106854(n), A145934(n), A145976(n), A145978(n), A146078(n), A146080(n), A146083(n), A146084(n) for x = -12,-11,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12 respectively. - Philippe Deléham, Oct 27 2008
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A010892(n), A099087(n), A057083(n), A001787(n+1), A030191(n), A030192(n), A030240(n), A057084(n), A057085(n+1), A057086(n) for x = 0,1,2,3,4,5,6,7,8,9,10 respectively. - Philippe Deléham, Oct 28 2008
G.f.: 1/(1-y*x+y*x^2). - Philippe Deléham, Dec 15 2011
T(n,k) = T(n-1,k-1) - T(n-2,k-1), T(n,0) = 0^n. - Philippe Deléham, Feb 15 2012
Sum_{k=0..n} T(n,k)*x^(n-k) = F(n+1,-x) where F(n,x)is the n-th Fibonacci polynomial in x defined in A011973. - Philippe Deléham, Feb 22 2013
Sum_{k=0..n} T(n,k)^2 = A051286(n). - Philippe Deléham, Feb 26 2013
Sum_{k=0..n} T(n,k)*T(n+1,k) = -A110320(n). - Philippe Deléham, Feb 26 2013
For T(0,0) = 0, the signed triangle below has the o.g.f. G(x,t) = [t*x(1-x)]/[1-t*x(1-x)] = L[t*Cinv(x)] where L(x) = x/(1-x) and Cinv(x)=x(1-x) with the inverses Linv(x) = x/(1+x) and C(x)= [1-sqrt(1-4*x)]/2, an o.g.f. for the shifted Catalan numbers A000108, so the inverse o.g.f. is Ginv(x,t) = C[Linv(x)/t] = [1-sqrt[1-4*x/(t(1+x))]]/2 (cf. A124644 and A030528). - Tom Copeland, Jan 19 2016
EXAMPLE
Rows begin:
1;
0, 1;
0, -1, 1;
0, 0, -2, 1;
0, 0, 1, -3, 1;
0, 0, 0, 3, -4, 1;
0, 0, 0, -1, 6, -5, 1;
0, 0, 0, 0, -4, 10, -6, 1;
0, 0, 0, 0, 1, -10, 15, -7, 1;
0, 0, 0, 0, 0, 5, -20, 21, -8, 1;
0, 0, 0, 0, 0, -1, 15, -35, 28, -9, 1;
From Paul Barry, Sep 28 2009: (Start)
Production array is
0, 1,
0, -1, 1,
0, -1, -1, 1,
0, -2, -1, -1, 1,
0, -5, -2, -1, -1, 1,
0, -14, -5, -2, -1, -1, 1,
0, -42, -14, -5, -2, -1, -1, 1,
0, -132, -42, -14, -5, -2, -1, -1, 1,
0, -429, -132, -42, -14, -5, -2, -1, -1, 1 (End)
MATHEMATICA
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1&, #(1-#)&, 13] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
PROG
(Magma) /* As triangle */ [[(-1)^(n-k)*Binomial(k, n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jan 14 2016
CROSSREFS
Cf. A026729 (unsigned version), A000108, A030528, A124644.
Sequence in context: A363928 A331385 A026729 * A362763 A259095 A326676
KEYWORD
easy,sign,tabl
AUTHOR
Philippe Deléham, Aug 28 2005
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1