login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110311
Expansion of 1/((1+x+x^2)*(1+5*x+x^2)).
5
1, -6, 29, -138, 660, -3162, 15151, -72594, 347819, -1666500, 7984680, -38256900, 183299821, -878242206, 4207911209, -20161313838, 96598657980, -462831976062, 2217561222331, -10624974135594, 50907309455639, -243911573142600, 1168650556257360, -5599341208144200
OFFSET
0,2
COMMENTS
In reference to the program code, A004254(n+1) = 1ibaseiseq[A*B](n).
Superseeker finds: a(n) + a(n+1) + a(n+2) = (-1)^n*A004254(n+3).
FORMULA
a(n+2) = - 5*a(n+1) - a(n) + ((-1)^n)*A109265(n+1)/2.
a(n) = -6*a(n-1) - 7*a(n-2) - 6*a(n-3) - a(n-4) for n>3. - Colin Barker, May 14 2019
a(n) = (1/4)*(5*U(n, -5/2) + U(n-1, -5/2) - U(n, -1/2) - U(n-1, -1/2)), where U(n, x) = ChebyshevU(n, x). - G. C. Greubel, Jan 02 2023
MAPLE
seriestolist(series(1/((x^2+5*x+1)*(x^2+x+1)), x=0, 25));
MATHEMATICA
LinearRecurrence[{-6, -7, -6, -1}, {1, -6, 29, -138}, 40] (* G. C. Greubel, Jan 02 2023 *)
PROG
(PARI) Vec(1/((1+x+x^2)*(1+5*x+x^2)) + O(x^25)) \\ Colin Barker, May 14 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1+x+x^2)*(1+5*x+x^2)) )); // G. C. Greubel, Jan 02 2023
(SageMath)
def U(n, x): return chebyshev_U(n, x)
def A110311(n): return (1/4)*(5*U(n, -5/2) + U(n-1, -5/2) - U(n, -1/2) - U(n-1, -1/2))
[A110311(n) for n in range(41)] # G. C. Greubel, Jan 02 2023
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Jul 19 2005
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1