login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111133
Number of partitions of n into at least two distinct parts.
53
0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 9, 11, 14, 17, 21, 26, 31, 37, 45, 53, 63, 75, 88, 103, 121, 141, 164, 191, 221, 255, 295, 339, 389, 447, 511, 584, 667, 759, 863, 981, 1112, 1259, 1425, 1609, 1815, 2047, 2303, 2589, 2909, 3263, 3657, 4096, 4581, 5119, 5717, 6377
OFFSET
0,6
COMMENTS
Old name: Number of sets of natural numbers less than n which sum to n.
From Clark Kimberling, Mar 13 2012: (Start)
(1) Number of partitions of n into at least two distinct parts.
(2) Also, number of partitions of 2n into distinct parts having maximal part n; see Example section. (End)
LINKS
Riccardo Aragona, Roberto Civino, and Norberto Gavioli, A modular idealizer chain and unrefinability of partitions with repeated parts, arXiv:2301.06347 [math.RA], 2023.
Thomas Enkosky and Branden Stone, Sequences defined by h-vectors, arXiv preprint arXiv:1308.4945 [math.CO], 2013.
FORMULA
a(n) = A000009(n) - 1. - Vladeta Jovovic, Oct 19 2005
G.f.: Sum_{k>=0} (x^((k^2+k)/2) / Product_{j=1..k} (1-x^j)) - 1/(1-x). - Joerg Arndt, Sep 17 2012
a(n) = A026906(floor(n-1)/2) + A258259(n). - Bob Selcoe, Oct 05 2015
G.f.: -1/(1 - x) + Product_{k>=1} (1 + x^k). - Ilya Gutkovskiy, Aug 10 2018
G.f.: Sum_{n >= 1} x^(2*n+1)/Product_{k = 1..n+1} 1 - x^(2*k-1). - Peter Bala, Nov 20 2024
EXAMPLE
a(6) = 3 because 1+5, 2+4 and 1+2+3 each sum to 6. That is, the three sets are {1,5},{2,4},{1,2,3}.
For n=6, the partitions of 2n into distinct parts having maximum 6 are 6+5+1, 6+4+2, 6+3+2+1, so that a(6)=3, as an example for Comment (2). - Clark Kimberling, Mar 13 2012
MAPLE
seq(coeff(series(mul((1+x^k), k=1..n)-1/(1-x), x, n+1), x, n), n=0..60); # Muniru A Asiru, Aug 10 2018
MATHEMATICA
Needs["DiscreteMath`Combinatorica`"]
f[n_] := Block[{lmt = Floor[(Sqrt[8n + 1] - 1)/2] + 1, t}, Sum[ Length[ Select[Plus @@@ KSubsets[ Range[n - k(k - 1)/2 + 1], k], # == n &]], {k, 2, lmt}]]; Array[f, 55] (* Robert G. Wilson v, Oct 17 2005 *)
(* Next program shows the partitions (sets) *)
d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@ #] == 1 &]; Table[d[n], {n, 1, 12}]
TableForm[%]
(* Clark Kimberling, Mar 13 2012 *)
Table[PartitionsQ[n]-1, {n, 0, 55}] (* Jean-François Alcover, Jan 17 2014, after Vladeta Jovovic *)
PROG
(PARI) N=66; x='x+O('x^N);
gf=sum(k=0, N, x^((k^2+k)/2) / prod(j=1, k, 1-x^j)) - 1/(1-x);
concat( [0, 0, 0], Vec(gf) ) /* Joerg Arndt, Sep 17 2012 */
(Haskell)
a111133 = subtract 1 . a000009 -- Reinhard Zumkeller, Sep 09 2015
CROSSREFS
Cf. A058377.
Cf. A000009.
Sequence in context: A161306 A266744 A242216 * A279076 A076970 A064548
KEYWORD
nonn,nice
AUTHOR
David Sharp (davidsharp(AT)rcn.com), Oct 17 2005
EXTENSIONS
More terms from Vladeta Jovovic and Robert G. Wilson v, Oct 17 2005
a(0)=0 prepended by Joerg Arndt, Sep 17 2012
STATUS
approved

  NODES
orte 1
see 2
Story 1