login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112154
McKay-Thompson series of class 16g for the Monster group.
1
1, 2, 2, -4, 3, 2, 6, -4, 7, 12, 10, -16, 16, 14, 20, -20, 29, 40, 40, -52, 52, 52, 70, -68, 91, 114, 116, -148, 149, 152, 190, -196, 242, 296, 306, -368, 383, 396, 478, -496, 590, 698, 730, -856, 897, 940, 1096, -1152, 1342, 1548, 1630, -1876, 1975, 2080, 2390, -2516
OFFSET
0,2
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of A + 2*q/A, where A = q^(1/2)*(eta(q^4)*eta(q^8)/(eta(q^2)* eta(q^16)))^2, in powers of q. - G. C. Greubel, Jun 28 2018
EXAMPLE
T16g = 1/q + 2*q + 2*q^3 - 4*q^5 + 3*q^7 + 2*q^9 + 6*q^11 - 4*q^13 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; A:= q^(1/2)*(eta[q^4]*eta[q^8]/( eta[q^2]*eta[q^16]))^2; a:= CoefficientList[Series[A + 2*q/A, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 28 2018 *)
PROG
(PARI) q='q+O('q^50); A = (eta(q^4)*eta(q^8)/(eta(q^2)* eta(q^16)))^2; Vec(A + 2*q/A) \\ G. C. Greubel, Jun 28 2018
CROSSREFS
Sequence in context: A045828 A058526 A112153 * A112155 A355476 A328932
KEYWORD
sign
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved

  NODES
orte 1
see 1
Story 1