login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112540
Numbers m such that (15m-4, 15m-2, 15m+2, 15m+4) is a prime quadruple.
4
1, 7, 13, 55, 99, 125, 139, 217, 231, 377, 629, 867, 1043, 1049, 1071, 1203, 1261, 1295, 1401, 1485, 1687, 2115, 2323, 2919, 3423, 3689, 4199, 4481, 4633, 4815, 5151, 5313, 5403, 5515, 5921, 6523, 6609, 6741, 7323, 7769, 7953, 8147, 9031, 9611, 10485, 11047
OFFSET
1,2
COMMENTS
Also (4p + 16)/60 such that (p, p+2, p+6 and p+8) is a prime quadruple for p >= 11. - Michel Lagneau, Jul 02 2012
The density of these four-prime groups is approximately equal to (log x)^-3.45 (but not (log x)^-4). - Xueshi Gao, Jun 01 2014
All of the terms of this sequence are either 1, 7 or 13 modulo 14. - Rodolfo Ruiz-Huidobro, Dec 27 2019
From Eric Snyder, Jun 23 2021: (Start)
Building on the comment of R. Ruiz-Huidobro above, all terms of the sequence are congruent to one of {-1, 0 ,1} (mod 7). The appearance of mod 14 stems from the fact that all entries in this list must be odd. Equivalently, a(n) cannot be +- 2 or +- 3 (mod 7). This can be generalized for all larger primes:
All primes p >= 7 can be expressed as 15k +- q in a least absolute residue system, with q in {2, 4} if k is odd, and q in {1,7} if k is even.
For all primes 15k +- q >= 7, four residues +-r, +-s (mod p) exist such that, if for any p >= 7, [(m == +- r (mod p) or m == +- s (mod p)), and (m != k)], then m is not in this sequence. For the different values of p = 15k +- q, the values of +-r and +-s are as follows:
For p = 15k +- 1 (k even), r = +- 2k, s = +- 4k
For p = 15k +- 2 (k odd), r = +- k, s = +- 2k
For p = 15k + 4 (k odd), r = +- k, s = +- (7k + 2)
For p = 15k - 4 (k odd), r = +- k, s = +- (7k - 2)
For p = 15k + 7 (k even), r = +- (4k + 2), s = +- (8k + 4)
For p = 15k - 7 (k even), r = +- (4k - 2), s = +- (8k - 4)
These can be used to create an Eratosthenes-like sieve for the prime decades. (End)
EXAMPLE
m = 7 yields the quadruple (15*7 - 4 = 101, 15*7 - 2 = 103, 15*7 + 2 = 107, 15*7 + 4 = 109), so 7 is a term of the sequence.
MAPLE
A112540:=n->`if`(isprime(15*n-4) and isprime(15*n-2) and isprime(15*n+2) and isprime(15*n+4), n, NULL); seq(A112540(n), n=1..20000); # Wesley Ivan Hurt, Jul 26 2014
MATHEMATICA
Select[Range[6610], PrimeQ[15# - 4] && PrimeQ[15# - 2] && PrimeQ[15# + 2] && PrimeQ[15# + 4]&] (* T. D. Noe, Nov 16 2006 *)
PROG
(PARI) for(n=1, 1e4, if(isprime(15*n-4) && isprime(15*n-2) && isprime(15*n+2) && isprime(15*n+4), print1(n, ", "))) \\ Felix Fröhlich, Jul 26 2014
(Perl) use ntheory ":all"; say for map { (4*$_+16)/60 } sieve_prime_cluster(11, 15*10000, 2, 6, 8); # Dana Jacobsen, Dec 15 2015
(Magma) [n: n in [0..2*10^4] | IsPrime(15*n-4) and IsPrime(15*n-2) and IsPrime(15*n+2) and IsPrime(15*n+4)]; // Vincenzo Librandi, Dec 28 2015
(Python)
from sympy import isprime
def ok(m): return all(isprime(15*m+k) for k in [-4, -2, 2, 4])
print(list(filter(ok, range(11111)))) # Michael S. Branicky, Jun 24 2021
CROSSREFS
Sequence in context: A320462 A108056 A018562 * A193489 A091005 A015441
KEYWORD
nonn,easy
AUTHOR
Karsten Meyer, Dec 16 2005
EXTENSIONS
Corrected by T. D. Noe, Nov 16 2006
STATUS
approved

  NODES
orte 1
see 1
Story 1