Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Oct 13 2020 05:45:08
%S 64,729,15625,46656,117649,1000000,1771561,4826809,7529536,11390625,
%T 24137569,47045881,85766121,113379904,148035889,308915776,594823321,
%U 729000000,887503681,1291467969,1544804416,1838265625,2565726409,3010936384,3518743761,4750104241
%N Numbers whose prime factors are raised to the sixth power.
%H Nathaniel Johnston, <a href="/A113851/b113851.txt">Table of n, a(n) for n = 1..5000</a>
%F a(n) = A005117(n+1)^6. - _Nathaniel Johnston_, Jun 21 2011
%F Sum_{n>=1} 1/a(n) = zeta(6)/zeta(12) - 1 = A269404 - 1. - _Amiram Eldar_, Oct 13 2020
%p for n from 2 to 100 do if(numtheory[issqrfree](n))then printf("%d, ", n^6): fi: od: # _Nathaniel Johnston_, Jun 21 2011
%t Select[ Range@37^6, Union[Last /@ FactorInteger@# ] == {6} &] (* _Robert G. Wilson v_ *)
%t Select[Range[2, 37], SquareFreeQ]^6 (* _Amiram Eldar_, Oct 13 2020 *)
%o (PARI) allpwrfact(n,p) = \All prime factors are raised to the power p { local(x,j,ln,y,flag); for(x=4,n, y=Vec(factor(x)); ln = length(y[1]); flag=0; for(j=1,ln, if(y[2][j]==p,flag++); ); if(flag==ln,print1(x",")); ) }
%Y Subset of A001014. Superset of A030516.
%Y Nonunit terms of A329332 column 6 in ascending order.
%Y Cf. A005117, A269404.
%K easy,nonn
%O 1,1
%A _Cino Hilliard_, Jan 25 2006
%E More terms from _Robert G. Wilson v_, Jan 26 2006