login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115098
a(0) = 2, a(n) = 3*a(n-1) - 3.
3
2, 3, 6, 15, 42, 123, 366, 1095, 3282, 9843, 29526, 88575, 265722, 797163, 2391486, 7174455, 21523362, 64570083, 193710246, 581130735, 1743392202, 5230176603, 15690529806, 47071589415, 141214768242, 423644304723, 1270932914166
OFFSET
0,1
COMMENTS
Also the domination number of the (n+2)-Dorogovtsev-Goltsev-Mendes graph, where the convention DGM(0) = P_2 is used. - Eric W. Weisstein, Jan 14 2024
LINKS
Eric Weisstein's World of Mathematics, Domination Number.
Eric Weisstein's World of Mathematics, Dorogovtsev-Goltsev-Mendes Graph.
FORMULA
a(n) = (3^n + 3)/2.
a(n) = A067771(n-1), n > 0. - R. J. Mathar, Aug 11 2008
G.f.: (2-5*x)/((1-x)*(1-3*x)). - Vincenzo Librandi, Sep 13 2014
EXAMPLE
a(4) = (3^4 + 3)/2 = 84/2 = 42 = 3*a(3) - 3 = 3*15 - 3.
MAPLE
seq((3^i+3)/2, i=0..30);
MATHEMATICA
CoefficientList[Series[(2 - 5 x)/((1 - x) (1 - 3 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 13 2014 *)
NestList[3 # - 3 &, 2, 30] (* Harvey P. Dale, Feb 05 2021 *)
Table[(3^n + 3)/2, {n, 0, 20}] (* Eric W. Weisstein, Jan 14 2024 *)
(3^Range[0, 20] + 3)/2 (* Eric W. Weisstein, Jan 14 2024 *)
LinearRecurrence[{4, -3}, {2, 3}, 20] (* Eric W. Weisstein, Jan 14 2024 *)
PROG
(Magma) [(3^n+3)/2: n in [0..30]]; // Vincenzo Librandi, Sep 13 2014
(PARI) a(n)=(3^n+3)/2 \\ Charles R Greathouse IV, Sep 13 2014
CROSSREFS
Cf. A067771.
Sequence in context: A147773 A006403 A129960 * A036418 A120589 A110181
KEYWORD
easy,nonn
AUTHOR
Miklos Kristof, Mar 02 2006
STATUS
approved

  NODES
orte 1
see 1
Story 1