login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116410
Expansion of (1-x-2x^2+sqrt(1-2x-3x^2))/(2*(1-2x-3x^2)).
1
1, 1, 3, 8, 23, 66, 192, 561, 1647, 4850, 14318, 42351, 125468, 372191, 1105275, 3285288, 9772767, 29090826, 86646486, 258208671, 769820418, 2296067565, 6850744365, 20447143866, 61045757604, 182303186391, 544550917797
OFFSET
0,3
COMMENTS
Partial sums are A116409.
FORMULA
a(n) = ((3^n+2*0^n)/3 + Sum_{k=0..floor(n/2)} C(n,2k)C(2k,k))/2.
From Benedict W. J. Irwin, May 30 2016: (Start)
Let y1(-1)=0, y1(0)=0, y1(1)=1,
Let (3n-3)*y1(n)+(2-5n)*y1(n+1)+(n-1)*y1(n+2)+(n+2)*y1(n+3)=0,
Let y2(-1)=0, y2(0)=0, y2(1)=1,
Let (n-1)*y2(n)+(2+n)*y2(n+1)-(5n+7)*y2(n+2)+(3n+6)*y2(n+3)=0,
a(n) = (4*3^n+3*(-1)^n*y1(n+1)+3^(n+2)*y2(n+1))/24, n>0.
(End)
a(n) ~ 3^(n-1)/2 * (1 + 3*sqrt(3/(Pi*n))/2). - Vaclav Kotesovec, May 30 2016
D-finite with recurrence: a(n) = ((5*n-4)*a(n-1) -(3*n-6)*a(n-2) -(9*n-18)*a(n-3))/n for n>3. - Alois P. Heinz, May 30 2016
MAPLE
a:= proc(n) option remember; `if`(n<4, [1$2, 3, 8][n+1],
((5*n-4)*a(n-1)-(3*n-6)*a(n-2)-(9*n-18)*a(n-3))/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, May 30 2016
MATHEMATICA
Table[ (4 3^k + 3 (-1)^k DifferenceRoot[Function[{y, n}, {(-3 + 3 n) y[n] + (2 - 5 n) y[1 + n] + (-1 + n) y[2 + n] + (2 + n) y[3 + n] == 0, y[-1] == 0, y[0] == 0, y[1] == 1}]][1 + k] + 3^(2 + k)DifferenceRoot[Function[{y, n}, {(-1 + n) y[n] + (2 + n) y[1 + n] + (-7 - 5 n) y[2 + n] + (6 + 3 n) y[3 + n] == 0, y[-1] == 0, y[0] == 0, y[1] == 1}]][1 + k])/24, {k, 1, 20}] (* Benedict W. J. Irwin, May 30 2016 *)
CROSSREFS
Sequence in context: A018043 A291037 A147704 * A199841 A106606 A050535
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 13 2006
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1