login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117440
A cyclically signed version of Pascal's triangle.
4
1, 1, 1, -1, 2, 1, -1, -3, 3, 1, 1, -4, -6, 4, 1, 1, 5, -10, -10, 5, 1, -1, 6, 15, -20, -15, 6, 1, -1, -7, 21, 35, -35, -21, 7, 1, 1, -8, -28, 56, 70, -56, -28, 8, 1, 1, 9, -36, -84, 126, 126, -84, -36, 9, 1, -1, 10, 45, -120, -210, 252, 210, -120, -45, 10, 1
OFFSET
0,5
FORMULA
Column k has e.g.f.: (x^k/k!)*(cos(x) + sin(x)).
T(n, k) = binomial(n,k)*(cos(Pi*(n-k)/2) + sin(Pi*(n-k)/2)).
Sum_{k=0..n} T(n, k) = A009545(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A117441(n) (upward diagonal sums).
G.f.: (1 + x - x*y)/(1 - 2*x*y + x^2*(1 + y^2)). - Stefano Spezia, Mar 10 2024
EXAMPLE
Triangle begins:
1;
1, 1;
-1, 2, 1;
-1, -3, 3, 1;
1, -4, -6, 4, 1;
1, 5, -10, -10, 5, 1;
-1, 6, 15, -20, -15, 6, 1;
-1, -7, 21, 35, -35, -21, 7, 1;
MATHEMATICA
Table[Binomial[n, k]*(Cos[Pi*(n-k)/2] +Sin[Pi*(n-k)/2]), {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 01 2021 *)
PROG
(Sage) flatten([[binomial(n, k)*( cos(pi*(n-k)/2) + sin(pi*(n-k)/2) ) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 01 2021
CROSSREFS
Cf. A007318, A009545 (row sums), A117441 (diagonal sums), A117442 (inverse).
Sequence in context: A094495 A374452 A154926 * A118433 A007318 A108086
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Mar 16 2006
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1