login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118909
a(1) = 4; a(n) is least semiprime > a(n-1)^2.
2
4, 21, 445, 198026, 39214296677, 1537761063871773242347, 2364709089560047865452947255794201194068433, 5591849078247910476736920566826713466552016538943524658263883555662554776622687075541
OFFSET
1,1
COMMENTS
Semiprime analog of A055496 a(1) = 2; a(n) is smallest prime > 2*a(n-1). See also A059785 a(n+1)=prevprime(a(n)^2), with a(1) = 2. With that, of course, there's always a prime between n and 2n, so a(n) < 2^n. The obverse of this is A118908 a(1) = 4; a(n) is greatest semiprime < a(n-1)^2.
EXAMPLE
a(8) = a(7)^2 + 52 and there is no smaller k such that a(7)^2 + k is semiprime.
MATHEMATICA
nxt[n_]:=Module[{sp=n^2+1}, While[PrimeOmega[sp]!=2, sp++]; sp]; NestList[nxt, 4, 7] (* Harvey P. Dale, Oct 22 2012 *)
PROG
(Python)
from itertools import accumulate
from sympy.ntheory.factor_ import primeomega
def nextsemiprime(n):
while primeomega(n + 1) != 2: n += 1
return n + 1
def f(anm1, _): return nextsemiprime(anm1**2)
print(list(accumulate([4]*6, f))) # Michael S. Branicky, Apr 21 2021
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, May 05 2006
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1