login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120389
a(n) is such that the a(n)-th composite number is (n-th prime)^2.
4
1, 4, 15, 33, 90, 129, 227, 288, 429, 694, 798, 1149, 1417, 1565, 1879, 2399, 2993, 3201, 3879, 4365, 4623, 5429, 6002, 6920, 8245, 8948, 9314, 10067, 10457, 11245, 14251, 15184, 16627, 17130, 19711, 20253, 21919, 23653, 24845, 26687, 28604
OFFSET
1,2
FORMULA
a(n) = A065855(A000040(n)^2).
EXAMPLE
a(1)=1 because the 1st composite is 4 = 2^2 = (1st prime)^2.
a(4)=33 because the 33rd composite is 49 = 7^2 = (4th prime)^2;
MAPLE
c:=proc(n) if isprime(n)=false then n else fi end: C:=[seq(c(n), n=2..53000)]: a:=proc(n) local ct, i: ct:=0: for i from 1 while C[i]<=ithprime(n)^2 do ct:=ct+1: od: end: seq(a(n), n=1..50); # Emeric Deutsch, Jul 26 2006
PROG
(Python)
from sympy import prime, compositepi
A120389_list = [compositepi(prime(i)**2) for i in range(1, 101)] # Chai Wah Wu, Apr 21 2018
CROSSREFS
Cf. A002808.
Sequence in context: A116035 A256715 A022265 * A124150 A054556 A113693
KEYWORD
nonn
AUTHOR
Leroy Quet, Jun 30 2006
EXTENSIONS
More terms from Emeric Deutsch, Jul 26 2006
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1