login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120589
Self-convolution of A120588, such that a(n) = 3*A120588(n) for n >= 2.
2
1, 2, 3, 6, 15, 42, 126, 396, 1287, 4290, 14586, 50388, 176358, 624036, 2228700, 8023320, 29084535, 106073010, 388934370, 1432916100, 5301789570, 19692361260, 73398801060, 274447690920, 1029178840950, 3869712441972, 14585839204356
OFFSET
0,2
COMMENTS
For n >= 2, a(n) equals 2^(2n+1) times the coefficient of Pi in 2F1([3/2, n+1], [5/2], -1). - John M. Campbell, Jul 17 2011
LINKS
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
S. Kitaev, J. Remmel and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv:1201.6243 [math.CO], 2012. - From N. J. A. Sloane, May 09 2012
Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, arXiv:1302.2274 [math.CO], 2013.
Sergey Kitaev, Jeffrey Remmel, Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, 15 (2015), #A16.
FORMULA
a(n) = 3*A000108(n-1) for n >= 2, where A000108 are the Catalan numbers.
G.f.: (5 - 2*x - 3*sqrt(1-4*x))/2. - G. C. Greubel, Feb 18 2019
EXAMPLE
A(x) = 1 + 2*x + 3*x^2 + 6*x^3 + 15*x^4 + 42*x^5 + 126*x^6 + 396*x^7 + ...
A(x)^(1/2) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + ...
MAPLE
A120589List := proc(m) local A, P, n; A := [1, 2, 3]; P := [3];
for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]);
A := [op(A), P[-1]] od; A end: A120589List(26); # Peter Luschny, Mar 26 2022
MATHEMATICA
Join[{1, 2, 3}, Table[3*(2*n)!/n!/(n+1)!, {n, 2, 40}]]
CoefficientList[Series[(5-2x -3Sqrt[1-4x])/2, {x, 0, 30}], x] (* G. C. Greubel, Feb 18 2019 *)
PROG
(PARI) {a(n)=local(A=1+x+x^2+x*O(x^n)); for(i=0, n, A=A-3*A+2+x+A^2); polcoeff(A^2, n)}
(PARI) my(x='x+O('x^30)); Vec((5-2*x-3*sqrt(1-4*x))/2) \\ G. C. Greubel, Feb 18 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (5-2*x-3*Sqrt(1-4*x))/2 )); // G. C. Greubel, Feb 18 2019
(Sage) ((5-2*x-3*sqrt(1-4*x))/2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 18 2019
CROSSREFS
Cf. A120588 (A(x)^(1/2)); A120590-A120607.
Sequence in context: A129960 A115098 A036418 * A110181 A141351 A088793
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 16 2006
STATUS
approved

  NODES
orte 1
see 1
Story 1