login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122840
a(n) is the number of 0's at the end of n when n is written in base 10.
47
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0
OFFSET
1,100
COMMENTS
Greatest k such that 10^k divides n.
a(n) = the number of digits in n - A160093(n).
a(A005117(n)) <= 1. - Reinhard Zumkeller, Mar 30 2010
See A054899 for the partial sums. - Hieronymus Fischer, Jun 08 2012
From Amiram Eldar, Mar 10 2021: (Start)
The asymptotic density of the occurrences of k is 9/10^(k+1).
The asymptotic mean of this sequence is 1/9. (End)
LINKS
S. Ikeda and K. Matsuoka, On transcendental numbers generated by certain integer sequences, Siauliai Math. Semin., 8 (16) 2013, 63-69.
FORMULA
a(n) = A160094(n) - 1.
From Hieronymus Fischer, Jun 08 2012: (Start)
With m = floor(log_10(n)), frac(x) = x-floor(x):
a(n) = Sum_{j=1..m} (1 - ceiling(frac(n/10^j))).
a(n) = m + Sum_{j=1..m} (floor(-frac(n/10^j))).
a(n) = A054899(n) - A054899(n-1).
G.f.: g(x) = Sum_{j>0} x^10^j/(1-x^10^j). (End)
a(n) = min(A007814(n), A112765(n)). - Jianing Song, Jul 23 2022
EXAMPLE
a(160) = 1 because there is 1 zero at the end of 160 when 160 is written in base 10.
MATHEMATICA
a[n_] := IntegerExponent[n, 10]; Array[a, 100] (* Amiram Eldar, Mar 10 2021 *)
PROG
(Haskell)
a122840 n = if n < 10 then 0 ^ n else 0 ^ d * (a122840 n' + 1)
where (n', d) = divMod n 10
-- Reinhard Zumkeller, Mar 09 2013
(PARI) a(n)=valuation(n, 10) \\ Charles R Greathouse IV, Feb 26 2014
(Python)
def a(n): return len(str(n)) - len(str(int(str(n)[::-1]))) # Indranil Ghosh, Jun 09 2017
(Python)
def A122840(n): return len(s:=str(n))-len(s.rstrip('0')) # Chai Wah Wu, Jul 06 2022
(Python)
A122840 = lambda n: sympy.multiplicity(10, n) # M. F. Hasler, Apr 05 2024
CROSSREFS
A007814 is the base 2 equivalent of this sequence.
Sequence in context: A118553 A102448 A102683 * A379671 A083919 A063665
KEYWORD
nonn,base,easy
AUTHOR
Reinhard Zumkeller, Sep 13 2006
STATUS
approved

  NODES
orte 1
see 2
Story 1