login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127016
Expansion of 1/(1+7*x*c(x)), c(x) the g.f. of Catalan numbers A000108.
7
1, -7, 42, -259, 1582, -9702, 59388, -363867, 2228310, -13649650, 83599852, -512063790, 3136339276, -19210260076, 117662192928, -720683271819, 4414176556902, -27036862348986, 165600668448348, -1014304512179994, 6212613590747172, -38052263986931796
OFFSET
0,2
COMMENTS
Hankel transform is (-7)^n.
LINKS
FORMULA
a(n) = Sum_{k=0..n} A039599(n,k)*(-8)^k.
G.f.: 2/(9 - 7*sqrt(1-4*x)). - G. C. Greubel, May 31 2019
D-finite with recurrence 8*n*a(n) +(17*n+48)*a(n-1) +98*(-2*n+3)*a(n-2)=0. - R. J. Mathar, Nov 22 2024
MAPLE
c:=(1-sqrt(1-4*x))/2/x: ser:=series(1/(1+7*x*c), x=0, 25): seq(coeff(ser, x, n), n=0..22); - Emeric Deutsch, Mar 27 2007
MATHEMATICA
CoefficientList[Series[2/(9-7*Sqrt[1-4*x]), {x, 0, 30}], x] (* G. C. Greubel, May 31 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(2/(9-7*sqrt(1-4*x))) \\ G. C. Greubel, May 31 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(9 - 7*Sqrt(1-4*x)) )); // G. C. Greubel, May 31 2019
(Sage) (2/(9-7*sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 31 2019
CROSSREFS
Sequence in context: A252700 A033133 A082035 * A152239 A152240 A221794
KEYWORD
sign
AUTHOR
Philippe Deléham, Mar 21 2007
EXTENSIONS
More terms from Emeric Deutsch, Mar 27 2007
STATUS
approved

  NODES
orte 1
see 1
Story 1