login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131370
a(n) = 3a(n-1) - 3a(n-2) + 2a(n-3), a(0) = 3, a(1) = 2, a(2) = 0.
1
3, 2, 0, 0, 4, 12, 24, 44, 84, 168, 340, 684, 1368, 2732, 5460, 10920, 21844, 43692, 87384, 174764, 349524, 699048, 1398100, 2796204, 5592408, 11184812, 22369620, 44739240, 89478484, 178956972, 357913944, 715827884, 1431655764, 2863311528
OFFSET
0,1
COMMENTS
Sequence is identical to its third differences. Binomial transform of 3, -1, -1, 3, -1, -1, 3, -1, -1, ... .
FORMULA
a(n) = 2^n/3 + (8/3)cos(n*Pi/3). - Emeric Deutsch, Oct 15 2007
G.f.: -(3-7*x+3*x^2)/(2*x-1)/(x^2-x+1). - R. J. Mathar, Nov 14 2007
a(n) = 2*A086953(n-1) for n>0. - Rick L. Shepherd, Aug 02 2017
MAPLE
seq((1/3)*2^n+8*cos((1/3)*n*Pi)*1/3, n=0..33); # Emeric Deutsch, Oct 15 2007
MATHEMATICA
a = {3, 2, 0}; Do[AppendTo[a, 3*a[[ -1]] - 3*a[[ -2]] + 2*a[[ -3]]], {60}]; a (* Stefan Steinerberger, Oct 04 2007 *)
CROSSREFS
Cf. A086953.
Sequence in context: A292260 A322114 A062787 * A261180 A062707 A160230
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Sep 30 2007
EXTENSIONS
More terms from Stefan Steinerberger, Oct 04 2007
STATUS
approved

  NODES
orte 1
see 1
Story 1