login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134452
Balanced ternary digital root of n.
7
0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
OFFSET
0,1
COMMENTS
a(A005843(n))=0; a(A134453(n))=-1; a(A134454(n))=1; abs(a(A005408(n)))=1;
abs(a(n)) = A000035(n).
REFERENCES
D. E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, MA, Vol 2, pp 173-175.
LINKS
Eric Weisstein's World of Mathematics, Digital Root
Wikipedia, Balanced Ternary
FORMULA
a(n) = f(n) where f(n) = if n<-1 then f(-A065363(-n)) else (if n>1 then f(A065363(n)) else n).
EXAMPLE
42 == '+---0' --> +1-1-2-1+0=-2 == '-+' --> -1+1=0;
43 == '+---+' --> +1-1-2-1+1=-1;
CROSSREFS
KEYWORD
sign,base
AUTHOR
Reinhard Zumkeller, Oct 27 2007
STATUS
approved

  NODES
orte 1
see 1
Story 1