login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139352
Let the binary expansion of n be n = Sum_{k} 2^{r_k}, let e(n) be the number of r_k's that are even, o(n) the number that are odd; sequence gives o(n).
16
0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2
OFFSET
0,11
COMMENTS
e(n) + o(n) = A000120(n), the binary weight of n.
a(n) is also the number of 2's and 3's in the 4-ary representation of n. - Frank Ruskey, May 02 2009
LINKS
Franklin T. Adams-Watters and Frank Ruskey, Generating Functions for the Digital Sum and Other Digit Counting Sequences, JIS 12 (2009), Article 09.5.6.
FORMULA
G.f.: (1/(1-z))*Sum_{m>=0} (z^(2*4^m)/(1+(2*4^m))). - Frank Ruskey, May 03 2009
Recurrence relation: a(0)=0, a(4m) = a(4m+1) = a(m), a(4m+2) = a(4m+3) = 1+a(m). - Frank Ruskey, May 11 2009
a(n) = Sum_{k} A030308(n,k)*A000035(k). - Philippe Deléham, Oct 14 2011
EXAMPLE
For n = 43 = 2^0 + 2^1 + 2^3 + 2^5, e(43)=1, o(43)=3. [Typo fixed by Reinhard Zumkeller, Apr 22 2011]
MAPLE
A139352 := proc(n)
local a, bdgs, r;
a := 0 ;
bdgs := convert(n, base, 2) ;
for r from 2 to nops(bdgs) by 2 do
if op(r, bdgs) = 1 then
a := a+1 ;
end if;
end do:
a;
end proc: # R. J. Mathar, Jul 21 2016
MATHEMATICA
a[n_] := Count[Position[Reverse@IntegerDigits[n, 2], 1]-1, {_?OddQ}];
Table[a[n], {n, 0, 99}] (* Jean-François Alcover, Mar 04 2023 *)
a[0] = 0; a[n_] := a[n] = a[Floor[n/4]] + If[Mod[n, 4] > 1, 1, 0]; Array[a, 100, 0] (* Amiram Eldar, Jul 18 2023 *)
PROG
(Fortran) c See link in A139351
(Haskell)
import Data.List (unfoldr)
a139352 = sum . map ((`div` 2) . (`mod` 4)) .
unfoldr (\x -> if x == 0 then Nothing else Just (x, x `div` 4))
-- Reinhard Zumkeller, Apr 22 2011
(PARI) a(n)=if(n>3, a(n\4))+n%4\2 \\ Charles R Greathouse IV, Apr 21 2016
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved

  NODES
orte 1
see 2
Story 1