OFFSET
0,11
COMMENTS
e(n) + o(n) = A000120(n), the binary weight of n.
a(n) is also the number of 2's and 3's in the 4-ary representation of n. - Frank Ruskey, May 02 2009
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Franklin T. Adams-Watters and Frank Ruskey, Generating Functions for the Digital Sum and Other Digit Counting Sequences, JIS 12 (2009), Article 09.5.6.
FORMULA
G.f.: (1/(1-z))*Sum_{m>=0} (z^(2*4^m)/(1+(2*4^m))). - Frank Ruskey, May 03 2009
Recurrence relation: a(0)=0, a(4m) = a(4m+1) = a(m), a(4m+2) = a(4m+3) = 1+a(m). - Frank Ruskey, May 11 2009
EXAMPLE
For n = 43 = 2^0 + 2^1 + 2^3 + 2^5, e(43)=1, o(43)=3. [Typo fixed by Reinhard Zumkeller, Apr 22 2011]
MAPLE
A139352 := proc(n)
local a, bdgs, r;
a := 0 ;
bdgs := convert(n, base, 2) ;
for r from 2 to nops(bdgs) by 2 do
if op(r, bdgs) = 1 then
a := a+1 ;
end if;
end do:
a;
end proc: # R. J. Mathar, Jul 21 2016
MATHEMATICA
a[n_] := Count[Position[Reverse@IntegerDigits[n, 2], 1]-1, {_?OddQ}];
Table[a[n], {n, 0, 99}] (* Jean-François Alcover, Mar 04 2023 *)
a[0] = 0; a[n_] := a[n] = a[Floor[n/4]] + If[Mod[n, 4] > 1, 1, 0]; Array[a, 100, 0] (* Amiram Eldar, Jul 18 2023 *)
PROG
(Fortran) c See link in A139351
(Haskell)
import Data.List (unfoldr)
a139352 = sum . map ((`div` 2) . (`mod` 4)) .
unfoldr (\x -> if x == 0 then Nothing else Just (x, x `div` 4))
-- Reinhard Zumkeller, Apr 22 2011
(PARI) a(n)=if(n>3, a(n\4))+n%4\2 \\ Charles R Greathouse IV, Apr 21 2016
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Nadia Heninger and N. J. A. Sloane, Jun 07 2008
STATUS
approved