login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141531
Inverse binomial transform of A001651.
3
1, 1, 1, -2, 4, -8, 16, -32, 64, -128, 256, -512, 1024, -2048, 4096, -8192, 16384, -32768, 65536, -131072, 262144, -524288, 1048576, -2097152, 4194304, -8388608, 16777216, -33554432, 67108864, -134217728, 268435456, -536870912, 1073741824, -2147483648
OFFSET
0,4
FORMULA
a(n) = A123344(n+1), n > 0.
a(n) = (-2)^n/4 = (-1)^n*A000079(n-2), n > 1.
O.g.f.: (1 + 3*x + 3*x^2)/(1 + 2*x). - R. J. Mathar, Aug 27 2008
a(n) = -2*a(n-1) for n >= 3; a(0)=1, a(1)=1, a(2)=1. - Harvey P. Dale, May 04 2012
G.f.: x+1/Q(0) where Q(k) = 1 + x*(k+1)/(1 - 1/(1 - (k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Sep 23 2012
G.f.: 1+x/U(0) where U(k) = 1 - x*(k+4) + x*(k+3)/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 11 2012
a(n) = A122803(n-2) for n >= 2. - Georg Fischer, Nov 03 2018
E.g.f.: (3/4) + (3/2)*x + (1/4)*exp(-2*x). - Alejandro J. Becerra Jr., Feb 15 2021
MATHEMATICA
CoefficientList[Series[(1+3x+3x^2)/(1+2x), {x, 0, 40}], x] (* or *) Join[ {1, 1}, NestList[-2#&, 1, 38]] (* Harvey P. Dale, May 04 2012 *)
Join[{1, 1}, LinearRecurrence[{-2}, {1}, 32]] (* Ray Chandler, Aug 12 2015 *)
PROG
(PARI) Vec((1 + 3*x + 3*x^2)/(1 + 2*x) + O(x^40)) \\ Andrew Howroyd, Nov 03 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Paul Curtz, Aug 12 2008
EXTENSIONS
Edited and extended by R. J. Mathar, Aug 28 2008
STATUS
approved

  NODES
orte 1
see 1
Story 1