login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143360
Sum of root degrees of all symmetric ordered trees with n edges.
1
1, 3, 5, 12, 20, 45, 77, 168, 294, 630, 1122, 2376, 4290, 9009, 16445, 34320, 63206, 131274, 243542, 503880, 940576, 1939938, 3640210, 7488432, 14115100, 28973100, 54826020, 112326480, 213286590, 436268025, 830905245, 1697168160, 3241119750, 6611884290
OFFSET
1,2
FORMULA
G.f.: z*C(z^2)^2*(1+2*z*C(z^2))/(1-z*C(z^2)), where C(z)=(1-sqrt(1-4*z))/(2*z) is the g.f. of the Catalan numbers (A000108).
a(n) = Sum_{k=1..n} k * A143359(n,k).
D-finite with recurrence 2*(n+3)*a(n) +(-n-5)*a(n-1) +(-11*n-3)*a(n-2) +2*(2*n+1)*a(n-3) +12*(n-3)*a(n-4)=0. - R. J. Mathar, Jul 24 2022
MAPLE
C := z -> (1/2-(1/2)*sqrt(1-4*z))/z: G := z*C(z^2)^2*(1+2*z*C(z^2))/(1-z*C(z^2)): Gser := series(G, z=0, 40): seq(coeff(Gser, z, n), n=1..34);
MATHEMATICA
Module[{nmax = 33, G, C}, G = z*C[z^2]^2*(1 + 2*z*C[z^2])/(1 - z*C[z^2]); C[z_] = (1/2-(1/2)*Sqrt[1-4*z])/z; CoefficientList[G/z + O[z]^nmax, z]] (* Jean-François Alcover, Apr 09 2024 *)
CROSSREFS
Sequence in context: A089292 A309702 A358369 * A234005 A263346 A034763
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Aug 15 2008
STATUS
approved

  NODES
orte 1
see 1
Story 1