login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152086
a(n) = Sum_{k=1..n-1} k*A110971(n,k).
4
1, 3, 8, 21, 52, 126, 296, 685, 1556, 3498, 7768, 17122, 37416, 81308, 175568, 377469, 807604, 1721970, 3657464, 7746838, 16357496, 34459428, 72407728, 151851986, 317777032, 663908196, 1384524656, 2883208740, 5994736336, 12448784824, 25816193952, 53479331357, 110652549620
OFFSET
2,2
LINKS
M. A. Michels and U. Knauer, The congruence classes of paths and cycles, Discr. Math., 309 (2009), 5352-5359. See p. 5356.
FORMULA
a(n) = A102699(n)/2. - Paolo Xausa, Oct 13 2024, from N. J. A. Sloane formula in A102699.
MATHEMATICA
A110971[n_] := (n+1)*2^(n-2) - If[OddQ[n], (n-1/2)*Binomial[n-1, (n-1)/2], 2*(n-1)*Binomial[n-2, (n-2)/2]];
Array[A110971, 50, 2] (* Paolo Xausa, Oct 13 2024 *)
PROG
(Python)
from math import comb
def A152086(n): return ((n+1<<n-2)-(((n<<1)-1)*comb(n-1, n-1>>1)>>1 if n&1 else (n-1)*comb(n-2, n-2>>1)<<1)) # Chai Wah Wu, Oct 28 2024
CROSSREFS
Main diagonal of A377000.
Sequence in context: A259714 A096770 A007835 * A014396 A170881 A039671
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 20 2009
EXTENSIONS
More terms from Paolo Xausa, Oct 13 2024
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1