login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152919
a(1)=1, for n>1, a(n) = n^2/4 + n/2 for even n, a(n) = n^2/4 + n - 5/4 for odd n.
1
1, 2, 4, 6, 10, 12, 18, 20, 28, 30, 40, 42, 54, 56, 70, 72, 88, 90, 108, 110, 130, 132, 154, 156, 180, 182, 208, 210, 238, 240, 270, 272, 304, 306, 340, 342, 378, 380, 418, 420, 460, 462, 504, 506, 550, 552, 598, 600, 648, 650, 700, 702, 754, 756, 810, 812, 868
OFFSET
1,2
FORMULA
From Chai Wah Wu, Jun 09 2020: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 6.
G.f.: x*(x^5 - x^4 - x - 1)/((x - 1)^3*(x + 1)^2). (End)
From Bernard Schott, Jun 10 2020: (Start)
Bisections are:
a(1) = 1 and a(2k+1) = A028552(k) for k >= 1,
a(2k) = A002378(k) for k >= 1, hence,
a(2k+2) = a(2k+1) + 2 for k >= 1. (End)
MATHEMATICA
a[n_] := If[n == 1, 1, If[Mod[n, 2] == 0, n^2/4 + n/2, n^2/4 + n - 5/4]];
Table[a[n], {n, 1, 100}]
CROSSREFS
Sequence in context: A167856 A293750 A162578 * A306564 A002088 A092249
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Dec 15 2008
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1