login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 3*n X 6 0..2 arrays with row sums 2 and column sums n.
1

%I #28 Mar 10 2023 02:25:28

%S 90,202410,747558000,3536978063850,19292117692187340,

%T 115428185943399529200,737005538936597762145600,

%U 4937928427617947420104982250,34335031273255183438800013252500

%N Number of 3*n X 6 0..2 arrays with row sums 2 and column sums n.

%H Christoph Koutschan, <a href="/A172671/b172671.txt">Table of n, a(n) for n = 1..75</a> (first 33 terms from R. H. Hardin)

%H Manuel Kauers and Christoph Koutschan, <a href="https://arxiv.org/abs/2303.02793">Some D-finite and some Possibly D-finite Sequences in the OEIS</a>, arXiv:2303.02793 [cs.SC], 2023, pp. 19-23.

%F Conjectured recurrence of order 4 and degree 13: (n + 2)*(n + 3)^3*(3784*n^4 + 32164*n^3 + 100749*n^2 + 137862*n + 69678)*(n + 4)^5*a(n + 4) - (n + 2)*(n + 3)^3*(3*n + 10)*(3*n + 11)*(3799136*n^7 + 72183584*n^6 + 579689880*n^5 + 2548427912*n^4 + 6617561702*n^3 + 10141503096*n^2 + 8487349821*n + 2991586122)*a(n + 3) - 9*(n + 2)*(3*n + 7)*(3*n + 8)*(3*n + 10)*(3*n + 11)*(10844944*n^8 + 222321352*n^7 + 1973930222*n^6 + 9916013134*n^5 + 30831383530*n^4 + 60768378830*n^3 + 74160044251*n^2 + 51243135187*n + 15352797306)*a(n + 2) + 9*(3*n + 4)*(3*n + 5)*(3*n + 7)*(3*n + 8)*(3*n + 10)*(3*n + 11)*(29681696*n^7 + 504588832*n^6 + 3602458816*n^5 + 14001842392*n^4 + 32010306742*n^3 + 43078657918*n^2 + 31639900193*n + 9799573455)*a(n + 1) + 416745*(n + 1)*(3*n + 1)*(3*n + 2)*(3*n + 4)*(3*n + 5)*(3*n + 7)*(3*n + 8)*(3*n + 10)*(3*n + 11)*(3784*n^4 + 47300*n^3 + 219945*n^2 + 450988*n + 344237)*a(n) = 0. - _Christoph Koutschan_, Feb 26 2023

%F Conjecture: a(n) ~ 3^(3*n + 1/2) * 7^(3*n + 5/2) / (2^(19/2) * Pi^(5/2) * n^(5/2)), based on the recurrence by _Christoph Koutschan_. - _Vaclav Kotesovec_, Feb 27 2023

%p A172671:= proc(n) local x,i,j; coeftayl(add(add(x[i]*x[j],i=1..j),j=1..6)^(3*n),[seq(x[i],i=1..6)]=[0$6],[n$6]) end proc:

%p map(A172671, [$1..10]); # _Robert Israel_, Jan 15 2023

%t Walks6D[n_Integer, steps_List] := Walks6D[n, steps] =

%t Module[{vals = {{{{{1}}}}}, seq = {}, n0, n1},

%t Do[

%t vals = Table[

%t n0 = Ceiling[(nsum - n1 - n2 - n3 - n4)/2];

%t Join[

%t Table[0, {n0}],

%t Table[Total[Function[s,

%t pos = Reverse[Sort[{n1, n2, n3, n4, n5, nsum - n1 - n2 - n3 - n4 - n5} - s]];

%t If[Min[pos] < 0, 0, vals[[##]]& @@ Most[pos + 1]]] /@ steps],

%t {n5, n0, Min[n4, nsum - n1 - n2 - n3 - n4]}]

%t ],

%t {n1, 0, Min[n, nsum]},

%t {n2, 0, Min[n1, nsum - n1]},

%t {n3, 0, Min[n2, nsum - n1 - n2]},

%t {n4, 0, Min[n3, nsum - n1 - n2 - n3]}];

%t If[IntegerQ[n1 = nsum/6 + 1], AppendTo[seq, vals[[n1, n1, n1, n1, n1]]]],

%t {nsum, 2, 6 n, 2}];

%t Return[seq];

%t ];

%t rows = Join[Permutations[{1, 1, 0, 0, 0, 0}], Permutations[{2, 0, 0, 0, 0, 0}]];

%t Walks6D[20, rows] (* _Christoph Koutschan_, Feb 26 2023 *)

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 06 2010

  NODES
orte 1
see 1