login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172671
Number of 3*n X 6 0..2 arrays with row sums 2 and column sums n.
1
90, 202410, 747558000, 3536978063850, 19292117692187340, 115428185943399529200, 737005538936597762145600, 4937928427617947420104982250, 34335031273255183438800013252500
OFFSET
1,1
LINKS
Christoph Koutschan, Table of n, a(n) for n = 1..75 (first 33 terms from R. H. Hardin)
Manuel Kauers and Christoph Koutschan, Some D-finite and some Possibly D-finite Sequences in the OEIS, arXiv:2303.02793 [cs.SC], 2023, pp. 19-23.
FORMULA
Conjectured recurrence of order 4 and degree 13: (n + 2)*(n + 3)^3*(3784*n^4 + 32164*n^3 + 100749*n^2 + 137862*n + 69678)*(n + 4)^5*a(n + 4) - (n + 2)*(n + 3)^3*(3*n + 10)*(3*n + 11)*(3799136*n^7 + 72183584*n^6 + 579689880*n^5 + 2548427912*n^4 + 6617561702*n^3 + 10141503096*n^2 + 8487349821*n + 2991586122)*a(n + 3) - 9*(n + 2)*(3*n + 7)*(3*n + 8)*(3*n + 10)*(3*n + 11)*(10844944*n^8 + 222321352*n^7 + 1973930222*n^6 + 9916013134*n^5 + 30831383530*n^4 + 60768378830*n^3 + 74160044251*n^2 + 51243135187*n + 15352797306)*a(n + 2) + 9*(3*n + 4)*(3*n + 5)*(3*n + 7)*(3*n + 8)*(3*n + 10)*(3*n + 11)*(29681696*n^7 + 504588832*n^6 + 3602458816*n^5 + 14001842392*n^4 + 32010306742*n^3 + 43078657918*n^2 + 31639900193*n + 9799573455)*a(n + 1) + 416745*(n + 1)*(3*n + 1)*(3*n + 2)*(3*n + 4)*(3*n + 5)*(3*n + 7)*(3*n + 8)*(3*n + 10)*(3*n + 11)*(3784*n^4 + 47300*n^3 + 219945*n^2 + 450988*n + 344237)*a(n) = 0. - Christoph Koutschan, Feb 26 2023
Conjecture: a(n) ~ 3^(3*n + 1/2) * 7^(3*n + 5/2) / (2^(19/2) * Pi^(5/2) * n^(5/2)), based on the recurrence by Christoph Koutschan. - Vaclav Kotesovec, Feb 27 2023
MAPLE
A172671:= proc(n) local x, i, j; coeftayl(add(add(x[i]*x[j], i=1..j), j=1..6)^(3*n), [seq(x[i], i=1..6)]=[0$6], [n$6]) end proc:
map(A172671, [$1..10]); # Robert Israel, Jan 15 2023
MATHEMATICA
Walks6D[n_Integer, steps_List] := Walks6D[n, steps] =
Module[{vals = {{{{{1}}}}}, seq = {}, n0, n1},
Do[
vals = Table[
n0 = Ceiling[(nsum - n1 - n2 - n3 - n4)/2];
Join[
Table[0, {n0}],
Table[Total[Function[s,
pos = Reverse[Sort[{n1, n2, n3, n4, n5, nsum - n1 - n2 - n3 - n4 - n5} - s]];
If[Min[pos] < 0, 0, vals[[##]]& @@ Most[pos + 1]]] /@ steps],
{n5, n0, Min[n4, nsum - n1 - n2 - n3 - n4]}]
],
{n1, 0, Min[n, nsum]},
{n2, 0, Min[n1, nsum - n1]},
{n3, 0, Min[n2, nsum - n1 - n2]},
{n4, 0, Min[n3, nsum - n1 - n2 - n3]}];
If[IntegerQ[n1 = nsum/6 + 1], AppendTo[seq, vals[[n1, n1, n1, n1, n1]]]],
{nsum, 2, 6 n, 2}];
Return[seq];
];
rows = Join[Permutations[{1, 1, 0, 0, 0, 0}], Permutations[{2, 0, 0, 0, 0, 0}]];
Walks6D[20, rows] (* Christoph Koutschan, Feb 26 2023 *)
CROSSREFS
Sequence in context: A279442 A172572 A052277 * A066784 A135321 A135428
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 06 2010
STATUS
approved

  NODES
orte 1
see 1
Story 1