login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178249
Table T(n,k) counts the involutions of n with longest increasing contiguous subsequence of length k.
1
1, 1, 1, 1, 2, 1, 1, 6, 2, 1, 1, 14, 8, 2, 1, 1, 37, 27, 8, 2, 1, 1, 96, 94, 30, 8, 2, 1, 1, 270, 338, 114, 30, 8, 2, 1, 1, 777, 1237, 446, 118, 30, 8, 2, 1, 1, 2370, 4684, 1809, 473, 118, 30, 8, 2, 1, 1, 7450, 18142, 7502, 1964, 478, 118, 30, 8, 2, 1, 1, 24485, 72524, 32093, 8414, 1998, 478, 118, 30, 8, 2, 1
OFFSET
1,5
COMMENTS
Reverse of rows converges to 1,2,8,30,118,478,2004,8666,..
EXAMPLE
T(4,2) = 6 because the 6 involutions with longest increasing contiguous subsequence lengths equal to 2 are: 1324, 1432, 2143, 3214, 3412, 4231.
Table starts:
1;
1, 1;
1, 2, 1;
1, 6, 2, 1;
1, 14, 8, 2, 1;
1, 37, 27, 8, 2, 1;
1, 96, 94, 30, 8, 2, 1;
1, 270, 338, 114, 30, 8, 2, 1;
MATHEMATICA
(* first do *)
Needs["Combinatorica`"]
(* then *)
maxISS[perm_List] := Max[0, (Max @@ (Length[#1]*Sign[First[#1]] & ) /@ Split[Sign[Rest[#1] - Drop[#1, -1]]] & )[perm]]; classMaxISS[par_?PartitionQ]:=Count[ maxISS/@( TableauxToPermutation[FirstLexicographicTableau[par], #]&/@Tableaux[par] ) , #]&/@(-1+Range[ Tr[par] ]);
Table[Apply[Plus, classMaxISS/@Partitions[n]], {n, 2, 6}];
CROSSREFS
Cf. A008304; row sums are A000085; A047884 removes the contiguity requirement.
Sequence in context: A265315 A179380 A107106 * A119502 A142156 A136707
KEYWORD
nonn,tabl
AUTHOR
Wouter Meeussen, Dec 20 2010
EXTENSIONS
Definition corrected by Wouter Meeussen, Dec 22 2010
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1