login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182446
a(n) = Sum_{k = 0..n} C(n,k)^9.
12
1, 2, 514, 39368, 10601986, 2003906252, 588906874144, 159219918144128, 51207103076632066, 16425660314368351892, 5697191745563573732764, 2010823973962863400708688, 739753103704422167184400096, 277511604090132008416695054272, 106814999715696983804826836579584
OFFSET
0,2
LINKS
Vaclav Kotesovec, Recurrence (of order 5)
M. A. Perlstadt, Some Recurrences for Sums of Powers of Binomial Coefficients, Journal of Number Theory 27 (1987), pp. 304-309.
FORMULA
Asymptotic (p = 9): a(n) ~ 2^(p*n)/sqrt(p)*(2/(Pi*n))^((p - 1)/2)*( 1 - (p - 1)^2/(4*p*n) + O(1/n^2) ).
For r a nonnegative integer, Sum_{k = r..n} C(k,r)^9*C(n,k)^9 = C(n,r)^9*a(n-r), where we take a(n) = 0 for n < 0. - Peter Bala, Jul 27 2016
Sum_{n>=0} a(n) * x^n / (n!)^9 = (Sum_{n>=0} x^n / (n!)^9)^2. - Ilya Gutkovskiy, Jul 17 2020
MAPLE
a := n -> hypergeom([seq(-n, i=1..9)], [seq(1, i=1..8)], -1):
seq(simplify(a(n)), n=0..14); # Peter Luschny, Jul 27 2016
MATHEMATICA
Table[Sum[Binomial[n, k]^9, {k, 0, n}], {n, 0, 25}]
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k)^9); \\ Michel Marcus, Jul 17 2020
CROSSREFS
Sum_{k = 0..n} C(n,k)^m for m = 1..12: A000079, A000984, A000172, A005260, A005261, A069865, A182421, A182422, A182446, A182447, A342294, A342295.
Sequence in context: A294276 A320520 A196290 * A218436 A080778 A007513
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Apr 29 2012
STATUS
approved

  NODES
orte 1
see 1
Story 1