login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182977
Total number of parts that are neither the smallest part nor the largest part in all partitions of n.
4
0, 0, 0, 0, 0, 0, 1, 2, 6, 12, 22, 39, 66, 103, 159, 243, 352, 510, 721, 1011, 1391, 1903, 2557, 3436, 4549, 5999, 7824, 10187, 13132, 16886, 21544, 27414, 34657, 43703, 54797, 68558, 85328, 105963, 131028, 161664, 198710
OFFSET
0,8
LINKS
FORMULA
a(n) = A006128(n) - A182978(n).
G.f.: g(x) = Sum_{i>=1} Sum_{j>=i+1} (Sum_{k=i+1..j-1} x^{i+j+k}/(1-x^k)/Product_{k=i..j}(1-x^k)). - Emeric Deutsch, Dec 25 2015
a(n) = Sum_{k>=0} k*A265249(n,k). - Emeric Deutsch, Dec 25 2015
EXAMPLE
For n = 6 the partitions of 6 are
6
5 + 1
4 + 2
4 + 1 + 1
3 + 3
3 + (2) + 1 .......... the "2" is the part that counts.
3 + 1 + 1 + 1
2 + 2 + 2
2 + 2 + 1 + 1
2 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1
There is only one part which is neither the smallest part nor the largest part in all partitions of 6, so a(6) = 1.
MAPLE
g := add(add((add(x^(i+j+k)/(1-x^k), k = i+1 .. j-1))/(mul(1-x^k, k = i .. j)), j = i+1 .. 80), i = 1 .. 80): gser := series(g, x = 0, 50): seq(coeff(gser, x, n), n = 0 .. 45); # Emeric Deutsch, Dec 25 2015
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jul 17 2011
EXTENSIONS
a(12) corrected and more terms a(13)-a(40) from David Scambler, Jul 18 2011
STATUS
approved

  NODES
orte 1
see 1
Story 1