login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191968
a(n) = Fibonacci(8n+5) mod Fibonacci(8n+1).
1
29, 1364, 64079, 3010349, 141422324, 6643838879, 312119004989, 14662949395604, 688846502588399, 32361122672259149, 1520283919093591604, 71420983074726546239, 3355265920593054081629, 157626077284798815290324, 7405070366464951264563599, 347880681146567910619198829
OFFSET
1,1
FORMULA
G.f.: x*( 29+x ) / ( 1-47*x+x^2 ). - R. J. Mathar, Nov 15 2011; adapted to offset by Bruno Berselli, Jun 29 2014
a(n) = 47*a(n-1) -a(n-2) for n>1. - Vincenzo Librandi, Jun 29 2014
a(n) = Lucas(8*n - 1) for n >= 1. - Ehren Metcalfe, Apr 04 2019
a(n) = ((47+21*sqrt(5))^(-n)*(-2^(1+n)*(85+38*sqrt(5)) + (65+29*sqrt(5))*(2207+987*sqrt(5))^n)) / (105+47*sqrt(5)). - Colin Barker, Apr 05 2019
MATHEMATICA
Table[Mod[Fibonacci[(8*n + 5)] , Fibonacci[(8*n + 1)]], {n, 1, 16}]
PROG
(Magma) [Fibonacci(8*n+5) mod Fibonacci(8*n+1): n in [1..20]]; // Vincenzo Librandi, Jun 29 2014
(PARI) a(n)=([0, 1; -1, 47]^(n-1)*[29; 1364])[1, 1] \\ Charles R Greathouse IV, Jul 06 2017
(PARI) Vec(x*(29 + x) / (1 - 47*x + x^2) + O(x^20)) \\ Colin Barker, Apr 05 2019
CROSSREFS
Sequence in context: A195740 A139192 A290022 * A049657 A091994 A126555
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Nov 15 2011
STATUS
approved

  NODES
orte 1
see 1
Story 1