login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194526
First coordinate of (5,6)-Lagrange pair for n.
3
-1, -2, 3, 2, 1, 0, -1, -2, 3, 2, -1, 0, -1, 4, 3, 2, 1, 0, -1, 4, 3, 0, 1, 0, 5, 4, 3, 2, 1, 0, 5, 4, 1, 2, 1, 6, 5, 4, 3, 2, 1, 6, 5, 2, 3, 2, 7, 6, 5, 4, 3, 2, 7, 6, 3, 4, 3, 8, 7, 6, 5, 4, 3, 8, 7, 4, 5, 4, 9, 8, 7, 6, 5, 4, 9, 8, 5, 6, 5, 10, 9, 8, 7, 6, 5, 10, 9, 6, 7, 6, 11, 10, 9, 8, 7, 6
OFFSET
1,2
COMMENTS
See A194508.
FORMULA
From Chai Wah Wu, Jan 21 2020: (Start)
a(n) = a(n-1) + a(n-11) - a(n-12) for n > 12.
G.f.: x*(2*x^11 - 3*x^10 - x^9 + 5*x^8 - x^7 - x^6 - x^5 - x^4 - x^3 + 5*x^2 - x - 1)/(x^12 - x^11 - x + 1). (End)
a(n) = 5*n - 2 - 2*floor(9*n/11) - 6*floor((9*n + 5)/11) + 2*floor((9*n + 10)/11). - Ridouane Oudra, Dec 30 2020
EXAMPLE
This table shows (x(n),y(n)) for 1<=n<=13:
n...... 1..2..3..4..5..6..7..8..9..10..11..12..13
x(n).. -1.-2..3..2..1..0.-1.-2..3..2..-1...0..-1
y(n)... 1..2.-2.-1..0..1..2..3.-1..0...2...2...3
MATHEMATICA
c = 5; d = 6;
x1 = {-1, -2, 3, 2, 1, 0, -1, -2, 3, 2, -1}; y1 = {1, 2, -2, -1, 0, 1,
2, 3, -1, 0, 2};
x[n_] := If[n <= c + d, x1[[n]], x[n - c - d] + 1]
y[n_] := If[n <= c + d, y1[[n]], y[n - c - d] + 1]
Table[x[n], {n, 1, 100}] (* A194526 *)
Table[y[n], {n, 1, 100}] (* A194527 *)
r[1, n_] := n; r[2, n_] := x[n]; r[3, n_] := y[n]
TableForm[Table[r[m, n], {m, 1, 3}, {n, 1, 30}]]
CROSSREFS
Sequence in context: A037891 A037899 A037837 * A165033 A179766 A342872
KEYWORD
sign
AUTHOR
Clark Kimberling, Aug 28 2011
STATUS
approved

  NODES
orte 1
see 2
Story 1