OFFSET
0,5
COMMENTS
FORMULA
a(n,k) = a_k(1,2,..,n) if 0<=n<4, and a_k(1,2,3,5,...,n+1) if n>=4, with the elementary symmetric functions a_k defined in a comment to A196841.
a(n,k) = 0 if n<k, a(n,k)= |s(n+1,n+1-k)| if 0<=n<4, and
a(n,k)= sum((-4)^m*|s(n+2,n+2-k+m)|,m=0..k) if n>=4
with the Stirling numbers of the first kind s(n,m)=
A048994(n,m).
EXAMPLE
n\k 0 1 2 3 4 5 6 7 ...
0: 1
1: 1 1
2: 1 3 2
3: 1 6 11 6
4: 1 11 41 61 30
5: 1 17 107 307 396 180
6: 1 24 226 1056 2545 2952 1260
7: 1 32 418 2864 10993 23312 24876 10080
...
a(3,0) = a_0(1,2,3):= 1, a(3,1) = a_1(1,2,3)= 6.
a(4,2) = a_2(1,2,3,5) = 1*2+1*3+1*5+2*3+2*5+3*5 = 41.
a(4,2) = 1*|s(6,4)| - 4*|s(6,5)| + 16*|s(6,6)| =
1*85 -4*15+16*1 = 41.
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Oct 25 2011
STATUS
approved