login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196843
Table of the elementary symmetric functions a_k(1,2,3,5,6...n+1) (missing 4).
2
1, 1, 1, 1, 3, 2, 1, 6, 11, 6, 1, 11, 41, 61, 30, 1, 17, 107, 307, 396, 180, 1, 24, 226, 1056, 2545, 2952, 1260, 1, 32, 418, 2864, 10993, 23312, 24876, 10080, 1, 41, 706, 6626, 36769, 122249, 234684, 233964, 90720, 1, 51, 1116, 13686, 103029, 489939, 1457174
OFFSET
0,5
COMMENTS
For the symmetric functions a_k and the definition of the triangles S_j(n,k) see a comment in A196841. Here x[j]=j for j=1,2,3 and x[j]=j+1 for j=4,...,n. This is the triangle S_4(n,k), n>=0, k=0..n. The first four rows coincide with those of triangle A094638.
FORMULA
a(n,k) = a_k(1,2,..,n) if 0<=n<4, and a_k(1,2,3,5,...,n+1) if n>=4, with the elementary symmetric functions a_k defined in a comment to A196841.
a(n,k) = 0 if n<k, a(n,k)= |s(n+1,n+1-k)| if 0<=n<4, and
a(n,k)= sum((-4)^m*|s(n+2,n+2-k+m)|,m=0..k) if n>=4
with the Stirling numbers of the first kind s(n,m)=
A048994(n,m).
EXAMPLE
n\k 0 1 2 3 4 5 6 7 ...
0: 1
1: 1 1
2: 1 3 2
3: 1 6 11 6
4: 1 11 41 61 30
5: 1 17 107 307 396 180
6: 1 24 226 1056 2545 2952 1260
7: 1 32 418 2864 10993 23312 24876 10080
...
a(3,0) = a_0(1,2,3):= 1, a(3,1) = a_1(1,2,3)= 6.
a(4,2) = a_2(1,2,3,5) = 1*2+1*3+1*5+2*3+2*5+3*5 = 41.
a(4,2) = 1*|s(6,4)| - 4*|s(6,5)| + 16*|s(6,6)| =
1*85 -4*15+16*1 = 41.
CROSSREFS
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Oct 25 2011
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1