login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210065
Expansion of phi(q^2) / phi(q) in powers of q where phi() is a Ramanujan theta function.
2
1, -2, 6, -12, 22, -40, 68, -112, 182, -286, 440, -668, 996, -1464, 2128, -3056, 4342, -6116, 8538, -11820, 16248, -22176, 30068, -40528, 54308, -72378, 95976, -126648, 166352, -217560, 283344, -367552, 474998, -611624, 784812, -1003712, 1279562, -1626216
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (eta(q) / eta(q^8))^2 * (eta(q^4) / eta(q^2))^7 in powers of q.
Euler transform of period 8 sequence [-2, 5, -2, -2, -2, 5, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 2^(-1/2) * g(t) where q = exp(2 Pi i t) and g() is g.f. for A080015.
a(n) = (-1)^n * A208850(n). Convolution inverse of A080015.
a(n) ~ (-1)^n * exp(sqrt(n)*Pi) / (8*n^(3/4)). - Vaclav Kotesovec, Nov 17 2017
EXAMPLE
G.f. = 1 - 2*q + 6*q^2 - 12*q^3 + 22*q^4 - 40*q^5 + 68*q^6 - 112*q^7 + 182*q^8 + ...
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[((1 - x^k) / (1 - x^(8*k)))^2 * (1 + x^(2*k))^7, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 17 2017 *)
eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[(eta[q]/ eta[q^8])^2*(eta[q^4]/eta[q^2])^7, {q, 0, 50}], q] (* G. C. Greubel, Aug 11 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^8 + A))^2 * (eta(x^4 + A) / eta(x^2 + A))^7, n))};
CROSSREFS
Sequence in context: A168193 A182977 A116658 * A208850 A131520 A086953
KEYWORD
sign
AUTHOR
Michael Somos, Mar 16 2012
STATUS
approved

  NODES
orte 1
see 2
Story 1