login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210067
Expansion of (phi(-q) / phi(q^2))^2 in powers of q where phi() is a Ramanujan theta function.
3
1, -4, 0, 16, 0, -56, 0, 160, 0, -404, 0, 944, 0, -2072, 0, 4320, 0, -8648, 0, 16720, 0, -31360, 0, 57312, 0, -102364, 0, 179104, 0, -307672, 0, 519808, 0, -864960, 0, 1419456, 0, -2299832, 0, 3682400, 0, -5831784, 0, 9141808, 0, -14194200, 0, 21842368, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (eta(q)^2 * eta(q^2) * eta(q^8)^2 / eta(q^4)^5)^2 in powers of q.
Euler transform of period 8 sequence [ -4, -6, -4, 4, -4, -6, -4, 0, ...].
a(2*n) = 0 unless n=0. a(2*n + 1) = -4 * A001938(n) = -A127393(n).
a(n) = (-1)^n * A134746(n).
Convolution inverse of A131126. Convolution square of A210030.
Empirical: Sum_{n>=0} a(n)/exp(2*Pi*n) = -32 - 24*sqrt(2) + 4*sqrt(140+99*sqrt(2)). - Simon Plouffe, Mar 02 2021
EXAMPLE
1 - 4*q + 16*q^3 - 56*q^5 + 160*q^7 - 404*q^9 + 944*q^11 - 2072*q^13 + ...
MATHEMATICA
a[n_] := SeriesCoefficient[(EllipticTheta[3, 0, -q]/EllipticTheta[3, 0, q^2])^2, {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Nov 29 2017 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^2 * eta(x^2 + A) * eta(x^8 + A)^2 / eta(x^4 + A)^5)^2, n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Mar 16 2012
STATUS
approved

  NODES
orte 1
see 2
Story 1