login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212177
Number of exponents >= 2 in the canonical prime factorization of the n-th nonsquarefree number (A013929(n)).
4
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1
OFFSET
1,13
COMMENTS
Length of second signature of A013929(n) (cf. A212172).
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Primefan, The First 2500 Integers Factored (1st of 5 pages).
FORMULA
a(n) = A056170(A013929(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (Sum_{p prime} 1/p^2)/(1-1/zeta(2)) = A085548 / A229099 = 1.15347789194214704903... . - Amiram Eldar, Oct 01 2023
EXAMPLE
24 = 2^3*3 has 1 exponent of size 2 or greater in its prime factorization. Since 24 = A013929(8), a(8) = 1.
MATHEMATICA
f[n_] := Module[{c = Count[FactorInteger[n][[;; , 2]], _?(# > 1&)]}, If[n > 1 && c > 0, c, Nothing]]; f[1] = 0; Array[f, 300] (* Amiram Eldar, Oct 01 2023 *)
PROG
(Haskell)
a212177 n = a212177_list !! (n-1)
a212177_list = filter (> 0) a056170_list
-- Reinhard Zumkeller, Dec 29 2012
(Python)
from math import isqrt
from sympy import mobius, factorint
def A212177(n):
def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return sum(1 for e in factorint(m).values() if e>1) # Chai Wah Wu, Jul 22 2024
KEYWORD
nonn,easy
AUTHOR
Matthew Vandermast, Jun 03 2012
STATUS
approved

  NODES
orte 1
see 1
Story 1