login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225198
Number of 8-line partitions of n (i.e., planar partitions of n with at most 8 lines).
10
1, 1, 3, 6, 13, 24, 48, 86, 160, 281, 497, 851, 1460, 2442, 4076, 6692, 10928, 17623, 28266, 44873, 70842, 110910, 172674, 266942, 410512, 627387, 954113, 1443063, 2172456, 3254446, 4854236, 7208018, 10659872, 15700111, 23035956, 33671399, 49042600, 71179250, 102963936, 148452294
OFFSET
0,3
COMMENTS
Number of partitions of n where there are k sorts of parts k for k<=7 and eight sorts of all other parts. - Joerg Arndt, Mar 15 2014
LINKS
Vincenzo Librandi and Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..1000
P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116. Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367. See Table II. - N. J. A. Sloane, May 21 2014
Vaclav Kotesovec, Graph - The asymptotic ratio (100000 terms, convergence is very slow)
FORMULA
G.f.: 1/Product_{n>=1}(1-x^n)^min(n,8). - Joerg Arndt, Mar 15 2014
a(n) ~ 7696581394432000 * sqrt(2) * Pi^28 * exp(4*Pi*sqrt(n/3)) / (19683 * 3^(1/4) * n^(67/4)). - Vaclav Kotesovec, Oct 28 2015
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(
min(d, 8)*d, d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..45); # Alois P. Heinz, Mar 15 2014
MATHEMATICA
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Min[d, 8]*d, {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
m:=50; r:=8; CoefficientList[Series[Product[(1-x^k)^(r-k), {k, 1, r-1}]/( Product[(1-x^j), {j, 1, m}])^r, {x, 0, m}], x] (* G. C. Greubel, Dec 10 2018 *)
PROG
(PARI) x='x+O('x^66); r=8; Vec( prod(k=1, r-1, (1-x^k)^(r-k)) / eta(x)^r )
(Magma) m:=50; r:=8; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1-x^k)^(r-k): k in [1..r-1]])/(&*[1-x^j: j in [1..2*m]] )^r )); // G. C. Greubel, Dec 10 2018
(Sage)
m=50; r=8
R = PowerSeriesRing(ZZ, 'x')
x = R.gen().O(m)
s = prod((1-x^k)^(r-k) for k in (1..r-1))/prod(1-x^j for j in (1..m+2))^r
s.coefficients() # G. C. Greubel, Dec 10 2018
CROSSREFS
A row of the array in A242641.
Sequences "number of r-line partitions": A000041 (r=1), A000990 (r=2), A000991 (r=3), A002799 (r=4), A001452 (r=5), A225196 (r=6), A225197 (r=7), A225198 (r=8), A225199 (r=9).
Sequence in context: A225196 A301597 A225197 * A225199 A000219 A356941
KEYWORD
nonn
AUTHOR
Joerg Arndt, May 01 2013
STATUS
approved

  NODES
orte 1
see 2
Story 1